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Abstract 
 
Existing regional travel forecasting systems are not typically set up to forecast usage of bicycle 
infrastructure and are insensitive to bicyclists' route preferences in general.  We collected 
revealed preference, GPS data on 162 bicyclists over the course of several days and coded the 
resulting trips to a highly detailed bicycle network model.  We then use these data to estimate 
bicyclist route choice models.  As part of this research, we developed a sophisticated choice set 
generation algorithm based on multiple permutations of labeled path attributes, which seems to 
out-perform comparable implementations of other route choice set generation algorithms.  The 
model was formulated as a Path-Size Logit model to account for overlapping route alternatives.  
The estimation results show compelling intuitive elasticities for route choice attributes, including 
the effects of distance and delay;  avoiding high-volumes of vehicular traffic, stops and turns, and 
elevation gain; and preferences for certain bike infrastructure types, particularly at bridge 
crossings and off-street paths.  Estimation results also support segmentation by commute versus 
non-commute trip types, but are less clear when it comes to gender.  The final model will be 
implemented as part of the regional travel forecasting system for Portland, Oregon, U.S.A. 
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1. Introduction 
Non-motorized travel options have been largely ignored in regional transportation planning 
studies in the U.S., where decisions on more resource-intensive investments in highway and 
transit facilities have been of primary concern.  Recently, however, policy-maker interest in 
sustainable transportation systems and healthier lifestyles has shifted some of the decision-
making focus to bicycling and walking and the extent to which the urban travel environment 
supports these alternative modes.  
 Travel forecasting models, the “workhorse” analytical tool for regional transportation 
decision making, have been well-developed to reflect the attributes important to predicting 
traveler responses to changes in the level of service of highway systems and transit systems, but 
are startlingly unrealistic in their representation of the pedestrian and bicycling environment.  
Focusing on bicycling, the practice implemented in all known operational travel forecasting 
models used in North America has been to assume that riders choose the minimum-distance path 
between origins and destinations using a fixed travel speed, usually without consideration of 
network attributes.  Congestion effects and other travel environment attributes, such as elevation 
and the presence of dedicated bike lanes, separated bikeways, or "bike boulevards" are not 
considered.  Moreover, extant models do not differentiate between classes of bicycle riders, nor 
do they segment the travel market in ways that could identify the viability of bicycling as a mode 
alternative, other than applying a maximum trip distance criterion. 
 In Portland, Oregon, in 2007, we collected detailed survey data revealing the actual paths 
taken by 164 bicyclists over the course of several days, using global positioning system (GPS) 
tracking devices. The data have been mapped to transportation network facilities, creating an 
enhanced digital bicycle network map files showing facility types, bike lanes and off-road trails.  
The GPS data reveal not only spatial paths, but also time-of-day readings at each starting and 
stopping points and elevation changes.  Each participant also provided detailed socio-economic, 
behavior, and attitude data. 
 In this paper, we present the results of our development a bicyclist route choice model 
that will be applied in a regional travel forecasting framework for Oregon Metro, the 
metropolitan planning organization for the Portland region and a regionally-elected governing 
body.  Metro Council is keenly interested in the capability of the modeling tool to project use of 
bicycle infrastructure investment alternatives and to derive economic welfare measures from such 
analysis.  The benefits to regional modeling are more accurate estimates of bicyclists’ travel paths 
and costs, which affect upstream destination and mode choices and enable analysts to answer a 
more complex set of questions related to urban form and investments in bicycle facilities than 
existing regional models currently support.  To our knowledge this is the first bicycle route 
choice model to be developed from revealed preference data that were generated through GPS 
methods, and the first such model to be applied to planning practice in a major metropolitan 
region in North America. 
 In the remainder of this paper we review the existing literature on bicycle route choice 
modeling; describe the GPS and network data we used in model development.  We then describe 
important analytical elements of the work, namely the development of network route choice set 
algorithms and the adoption of a path-size logit model formulations.  We then describe model 
specification and estimation results, including a final segmentations of decision makers by trip 
context and by gender.  Next, we discuss how this route choice model fits into and will be used in 
the larger Metro regional forecasting system.   Finally, we conclude this paper with an assessment 



3 
 

of what we believe to be the salient contributions of this research and suggest possible avenues 
for further inquiry.  

2. Existing Cyclist Route Choice Literature 
Most existing work on cyclist route choice consists of small, targeted studies focusing on only a 
few variables. Sener et al. (2009) provide a comprehensive review of published work. The 
primary data collection strategies used to date have been binary choice stated preference surveys 
and recalled paths. Only one, unpublished study known to the authors has used cyclists’ observed 
route choices, although the data used had not been originally collected for this purpose and 
therefore had some shortcomings (Menghini et al. 2009).  

2.1 Stated Preference Studies 
Stated preference studies have dominated the literature due to several appealing characteristics. 
Detailed travel network data are unnecessary. There is no need to solve the formidable problem 
of generating alternative routes. Model specification and estimation are also simpler due to the 
clean data and limited number of alternatives. From a policy perspective, the usual advantage of 
stated preferences for testing rare or nonexistent features also applies. 
  There are drawbacks to stated preference data for cyclist route choice. The usual 
technique in these studies is to show respondents a sequence of side-by-side comparisons from 
which a binary choice is made (see, for example, Krizek 2006, Hunt & Abraham 2007, Tilahun et 
al. 2007). It is difficult to know how well a participant can map these textual, or occasionally 
pictorial, representations to her preferences for real facilities. Many salient features of a route are 
sure to be missing on a piece of paper or computer screen. Also, although the choice set is in a 
sense controlled, it seems likely that respondents have in mind their own usual routes as points of 
comparison. Strategic bias is a possibility if participants think responses might influence policy 
outcomes. None of this is to say stated preference studies are not useful, only that their 
advantages in execution involve tradeoffs. 
  Landis et al. (1997) conducted an interesting variation on the typical stated preference 
method. Participants actually rode predefined alternative routes before evaluating each. There 
still may be a problem assuming cyclists can evaluate an unknown route in the same way they do 
a familiar one, but it does promise greater realism. 
  The stated preference work most comparable with our research are two similar studies of 
route choice based on web-based surveys (Stinson & Bhat 2003, Sener et al. 2009). Cyclists were 
provided with a base route and several alternatives with carefully designed characteristics. Mixed 
Multinomial Logit models were estimated using the stated preference data along with personal 
characteristics of participants. Taking into account specific data and modeling differences, we 
found the results to generally agree with our own. More specific comparisons are provided in the 
model estimation section of this paper. 

2.2 Revealed Preference Studies 
A handful of revealed preference studies have been undertaken on this topic, but most are limited 
studies that do not estimate a full route choice model. Most commonly, cyclists have been asked 
to recall routes. The routes are then compared with pre-selected routes based on shortest paths or 
other definitions of optimal paths (Aultman-Hall et al. 1997, McDonald and Burns 2001). These 
studies have the advantage of using actual routes and network data. The ability of cyclists to 
accurately recall routes is a question, but it may be quite accurate for habitual routes like 
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commute trips. The larger shortcoming of these studies are the limited choice sets and lack of 
compensatory models. 
 Menghini et al. (2009) analyzed GPS data for travelers in Zurich, Switzerland, estimating 
a full route choice model similar to ours. Time and spatial data on 636 chosen routes was 
extracted from a larger, pooled database of trips. Because these were general GPS data records, 
not specifically targeting bicyclists, the actual travel mode had to be inferred algorithmically. 
Personal and trip purpose information were not available. Network data were also limited, and 
different types of bike facilities were not distinguished.   
 In addition, choice sets were generated using an exhaustive search algorithm and 
randomly selecting 20 alternate routes for each trip. The average non-chosen alternative route 
was 2.4 times the distance of the mean chosen route, with average maximum grades more than 
twice the mean chosen route.  In our sample, routes that circuitous appear unlikely to be 
considered; however, the network topology may be different given the hilly terrain of Zurich, and 
it is unclear whether trips were for recreational or utilitarian purposes. 
  A Path Size Logit (PSL) specification was used similar to the one described below in 
Section 4. Estimation results showed some agreement with those presented here, but it is difficult 
to speculate whether the differences relate to data, choice set generation, or the route choice 
context and cyclist populations. The relatively high rho-squared model fit values, coupled with 
few significant parameters other than distance, and insignificant path size parameters suggest that 
the generated choice set may contain too few reasonable alternatives, biasing the parameter 
estimates. 

3. Data Description 
This research relies heavily on GPS data collected from collected during March through 
November 2007, from 162 bicyclists recruited from throughout the Portland metropolitan area.  
This research also relies heavily on accurate geographic information system (GIS) mapping of an 
urban street network and off-street bike paths, as well as compilation of attend attribute 
information regarding facility types, daily vehicular traffic volumes, and elevations.  Tying this 
all together, coding the GPS observations to individual link traversals and compiling link 
traversals into coherent trip patterns was a painstaking but critical element of this work, which 
sought to provide the most accurate portrayal possible of the route attributes actually experienced 
by the survey respondents during their rides.  A full report describing the GPS data collection 
methods and the processes used to prepare the data for our research may be found in the report by 
Dill and Gliebe (2008).   A summary of the important features of the data for the purposes of 
route choice modeling is provided below. 

3.1 Person attributes 
GPS participants were outfitted with small hand-held devices, which they clipped onto their 
bicycles.  They were instructed to enter both weather and trip attribute information and to record 
the beginning and end of a trip, defined by reaching a particular destination.  They also 
completed demographic and attitudinal surveys. 
 The participants in this study were primarily regular bicyclists, who agreed to participate 
in the GPS portion of the study following an initial set of telephone interviews.  Although regular 
cyclists are more likely to be male (80 percent according to the phone survey), we were able to 
recruit a GPS sample composed of 44 percent females.  Among all respondents, 89 percent were 
between the ages of 25 and 64.  Compared with the phone survey of bicyclists used to screen and 
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recruit them, the GPS participants were slightly older, were more likely to have a college degree, 
had higher incomes, and were more likely to have full-time jobs.  They were also more likely live 
in a two-person household, and only 7 percent lived in a household without a car.  The phone 
survey participants had a demographic comparable to the general population.   
 While participating in the study, GPS respondents made an average of 1.6 bicycle trips 
per day. Most participants (77 percent) made an average of two or few bicycle trips per day while 
they had the GPS device. Participants rode an average of 6.2 miles per day. The median bicycle 
trip distance was 2.8 miles. The vast majority of the bicycle travel recorded by the participants 
was for utilitarian purposes. Only five percent of the trips were purely for exercise. Aside from 
riding back home, riding to work was the most frequent trip purpose (25 percent of all trips). 
About 18 percent of the trips were for shopping, dining out, or other personal business, and 12 
percent were for social/recreation purposes (such as going to the movies, the gym, or visiting 
friends).  

3.2 GPS survey records 
When the bicyclists were riding for utilitarian purposes, they rode mainly on facilities with 
bicycle infrastructure. For over half (52 percent) of the miles bicycled on bicycle-only utilitarian 
trips were made on facilities with bicycle infrastructure, including lanes, separate paths, or 
bicycle boulevards. Over one-quarter of the mileage (28 percent) occurred on streets (arterials or 
minor streets) with bike lanes. An equal share (28 percent) of the mileage occurred on minor 
streets without bike lanes. These are typically low traffic volume, residential streets. Therefore, 
only 19 percent of the travel was on streets that would be expected to have high volumes of 
motor vehicle traffic and no separate facility for a bicycle. When asked about their route choices 
and preferences for utilitarian trips, participants placed highest importance on minimizing 
distance and avoiding streets with lots of vehicle traffic. Riding on a street with a bicycle lane 
was usually ranked third in importance, followed by reducing waiting time at stop lights and 
signs. 
 Bicycling for exercise purposes followed a different pattern. Exercise trips typically did 
not include a well-defined destination, tending to be structured as loops, thereby making shortest 
path comparisons nearly impossible.  For such trips, the path followed itself is the "destination," 
thus a different decision paradigm is clearly being followed.  Exercise trips were therefore not 
used to estimate route choice model parameters.   
 The average difference in distance between the actual bicycle trip and the shortest path 
between the same origin and destination was 0.95 miles, though the median was 0.27 miles. The 
difference between the shortest path and the observed route increases with trip distance. Looking 
only at the trips 10 miles or shorter in distance, the median difference between the observed route 
and the shortest path was just under a quarter mile (0.24 miles). This represents about an extra 1.5 
minutes of travel, given the average speed on the trips.  
 Comparing the facilities used for the observed trips to the shortest paths reveals some 
preferences in facility type. Bicyclists spent a higher share of their miles on facilities with bicycle 
infrastructure and on low traffic streets than the shortest paths predicted. In particular, they rode 
14 percent of their miles on bike facilities, compared with 6 percent of the miles for the shortest 
paths, a difference of eight percentage points. Arterials and highways that do not have bike lanes 
represented 19 percent of the bicyclists’ miles, compared with 36 percent of the shortest path 
miles. This also indicates that the major streets without bike lanes are often part of the shortest 
path between two points.  
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3.3 Network structure and attributes 
Bicycle infrastructure in the Portland region includes about 550 miles of bike lanes on streets, 
130 miles of separate bike paths, and 30 miles of “bicycle boulevards.” Bicycle boulevards are 
low-traffic residential streets, usually running parallel to a major road, that use traffic calming 
features to give priority to bicycles over motor vehicles. For example, barriers at some 
intersections force cars to turn while bikes can continue on a through path. Traffic signals allow 
bikes traveling on the boulevard to cross busy streets safely. The routes are signed and usually 
connect with other bicycle infrastructure, including lanes and bridge crossings. 
 The network model developed for this research included more than 90,000 undirected 
links and 70,000 nodes.  This network was constructed to include the various types of bike 
infrastructure discussed above, including off-street multi-use paths and low-volume residential 
streets.  The bike network did not include facilities that would be off-limits to bicycle travel, such 
as controlled access highways and freeways.   
 The City of Portland provided interpolated average daily traffic volumes for nearly all 
streets in the study area.  In addition, we coded elevation data to network nodes, enabling us to 
calculate elevation changes across a link.   

4. Model Formulation 

4.1 Overlapping Alternatives 
Overlapping routes presumably have correlated errors. This violates the multinomial logit (MNL) 
model assumption of independently distributed errors across alternatives. From a statistical point 
of view, an MNL route choice model will tend to assign counter-intuitively high probabilities to 
routes that share common network links. From a behavioral point of view, we might say that the 
MNL considers overlapping routes distinct alternatives; whereas, cyclists may consider such 
routes jointly as minor variants of a single alternative.  
 There are two options to overcome the overlapping routes problem (Frejinger & Bierlaire 
2007). A correction factor may be applied to partially adjust the utilities for overlap and the MNL 
model retained. Alternatively, more complex model forms may be specified that allow for 
correlated errors, including the multinomial probit model, mixed logit models, and closed-form 
members of the generalized extreme value (GEV) class of models.   
 For simplicity, we chose to retain the underlying MNL specification, and the route 
utilities were corrected using the path-size factor.  The rationale for this assumption of model 
form was that we recognized the need to be able to apply the model for prediction across a very 
complex, detailed network.  This requirement made the specifications of overlapping route 
calculations and nest memberships needed for the various probit, mixed logit, and GEV models 
seem somewhat intractable over such a large computational space.  
 A path size factor is calculated directly from route alternatives and network data, but 
avoids direct calculation of correlations across alternatives. The general form for the j alternatives 
in choice set Cn  is specified as: 
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where Γi are the links in alternative i, la is the length of link a, Li is the length of alternative i, and 
δaj equals 1 if j includes link a (Frejinger and Bierlaire 2007).  The parameter γ is a positive 
scaling term meant to penalize very long routes in a choice set.  Fixing or estimating γ>0 has 
been shown empirically to improve route choice model fit (Hoogendoorn-Lanser et al. 2005, 
Bekhor et al. 2006, Prato & Bekhor 2006, Prato & Bekhor 2007); however, it has recently been 
shown that γ>0 can result in questionable utility corrections and illogical path probabilities 
(Frejinger and Bierlaire 2007).  In addition, the choice set generation method described in the 
next section makes it unlikely that improbably long alternative paths will be included in our 
analysis. For these reasons, the path-size correction factor in equation 1 is used with γ=0, 
essentially dropping the long-path correction factor and yielding the basic Path Size Logit (PSL) 
model (Ben-Akiva & Bierlaire 1999). 
  While relatively simple, the PSL model has been shown to perform well relative to more 
complex model forms such as the cross-nested logit (CNL), although existing comparisons were 
performed with the generalized PS factor including γ>0 (Bekhor et al. 2006, Prato and Bekhor 
2006, Prato and Bekhor 2007). Although nested logit models should outperform the PSL 
specification, they are limited in real network applications due to the huge number of parameters 
that would have to be estimated to exploit their full flexibility (Bekhor et al. 2006, Frejinger and 
Bierlaire 2007). Some promising work has been presented recently on using sub-network 
components as an improvement to the PSL which maintains much of its estimation simplicity 
(Frejinger and Bierlaire 2007).  The method has not yet been applied to a real network problem 
but merits further research attention. 
  The remainder of this paper presents results obtained from the following specification of 
the Path Size Logit probability: 
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where PS is the path size factor from equation (1) with γ=0. Since PS will always fall between 0 
and 1, ln(PS) will be negative, consistent with a utility reduction proportional to the degree of 
overlap. 

4.2 Other Issues 
The original 162 participants were reduced to a usable estimation set for the purposes of route 
choice modeling, following a battery of data preparation exercises that eliminated  riders who 
rode purely for exercise without a specific destination endpoint.  Our estimation dataset therefore 
includes observations on 154 participants over multiple trips. It is likely that an individual’s 
series of route choices are correlated to some extent. The inclusion of multiple trip purposes and 
the generally short one to two week periods of observation probably limit such correlation. That 
is, two trips for different purposes by the same individual are likely to be less correlated than, 
say, two commute trips. Furthermore, a random investigation of commute trip sequences, which 
we might expect to be the most regular, showed substantial route choice variation across trips. It 
did not seem as though these cyclists were “locked in” to a usual route. For simplicity, trips were 
assumed to be independent and pooled for analysis. An obvious future extension would be to 
consider different specifications including individual-specific effects. 
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5. Choice Set Generation 
Generating the set of alternative route considered for each trip was the most difficult and time-
consuming part of our analysis. The size and density of the Portland bicycle travel network 
increased the task’s complexity, with nearly 90,000 undirected links and almost 70,000 nodes. In 
addition, the lack of existing revealed preference cyclist route choice studies demanded a careful 
rethinking of existing generation techniques. In particular, the common algorithms based on 
travel time and street hierarchy were not directly applicable. After experimenting with three 
common choice set generation methods, we chose a modified method of route labeling. Routes 
were chosen by maximizing individual criteria, subject to a flexible, calibrated distance 
constraint. 

5.1 Existing Techniques 
Most route choice set generation methods rely on a repeated shortest-path search that modifies 
either the network attributes or the search function at each iteration. Bovy (2009) provides a 
recent review. K-shortest paths is the technique with the longest tradition in route choice 
modeling. The shortest path is found, usually based on distance or travel time, and at each 
iteration either a link of the previous shortest path is removed (link-elimination) or the selected 
links are penalized (link-penalty). Simulated shortest paths has been proposed as a variation in 
which link costs are drawn from a specified probability distribution at each iteration (Ramming 
2001, Bekhor et al. 2006). The route labeling approach takes a somewhat different approach 
(Ben-Akiva et al. 1984, Bekhor et al 2006). Instead of modifying network attributes, the shortest 
path search function is modified at each step to focus on a different attribute or related set of 
attributes. For instance, one “label” might seek to minimize congested travel time, while another 
might maximize use of interstates and highways. Distance must be included as a cost in each 
label function to prevent the algorithm returning unreasonably circuitous paths. Branch and 
bound search is an exhaustive search that finds all possible routes between a given origin and 
destination subject to an analyst-specified guidance function. Branch and bound has shown 
promising results but has been applied only to networks 50 times smaller and less dense than the 
Portland bike network (Prato & Bekhor 2006). It was not considered for our study. 
  We initially experimented with K-shortest paths, simulated shortest paths, and route 
labeling choice set generation methods. Multiple variations of each were tried. The resulting 
choice sets were not satisfactory. In auto route choice models, travel time variation will typically 
be much greater than variation in distance for parallel routes. For instance, a major arterial is 
likely to be considerably quicker than a parallel minor street, even if the distance on each is 
similar. The result does not necessarily hold for bicycle travel. Distance and travel time are 
practically identical, since speed limits, roadway design, and intersection delays have a much 
smaller impact on a cyclist’s average speed. Combined with our dense street grid, this posed 
problems for K-shortest paths and simulated shortest paths, which tended to choose routes which 
were only minor variations of one another and with unreasonable numbers of turns.  
  There also was no straightforward method to ensure the existing algorithms include a 
reasonable number of alternatives using the bicycle network. Imposing turn penalties or 
arbitrarily reducing the cost on bike network links improved the results somewhat, but the 
selected routes still lacked coherency. Route labeling produced more reasonable routes; however, 
because each label produces only a single route, resulting choice sets often lacked a reasonable 
number of alternatives and sufficient variation on certain attributes. Out of 1,464 trips, 51 trips 
had no distinct alternative, and 50 more had only a single alternative, even when the distance 
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weights were relaxed in each label. Poor initial estimation results confirmed the unrealistic nature 
of the choice sets. 

5.2 A Modified, Calibrated Labeling Technique  
Building on the relative success of the route labeling method, we modified the existing technique 
to include a parameterized label functions.   Labels shown in below in Table 1 were chosen based 
on existing research findings and available network data. Most of the labels were selected from 
our respondents' answers to survey questions about important route choice factors. Maximizing 
bike lanes, signed routes, and paths as well as minimizing hills, traffic, and intersection delays 
were at least somewhat important to a majority of participants. The adjacent land-use variables 
employment and share commercial were included to proxy for driveway access, on-street 
parking, and parking turnover. These attributes were thought to be important, but we were unable 
to measure them directly. 
  For each label, we attempt to generate multiple alternatives by applying a cost function 
which balances the label attribute with the shortest-distance path.  The algorithm starts by 
initially assigning all the weight to the shortest-distance criterion and thereby finding the shortest 
distance path.  Then, the algorithm incrementally decreases this weight in small increments (e.g., 
0.1) and thereby gradually placing more weight on the label attribute.  With each decrease in the 
weight on distance, there is the possibility of finding a new least-cost path that attempts to 
minimize (or maximize) use of links with the attribute value.  When a new least-cost path is 
found, it is added to the choice set.  The process is constrained by setting a lower bound on the 
minimum value of the cost weight, such that the choice set will include only those paths that 
deviate from the minimum-distance path by the amounts observed in our data.  This is carried out 
for each label category.   
 
 
TABLE 1.  Attribute Labels

Label x i min(β )
Maximize all bike facilities link length*(1-bike facility dummy) 0.2
Maximize on-street bike lanes link length*(1-bike lane dummy) 0.3
Maximize improved and unimproved 
bike routes

link length*(1-bike route dummy) 0.2

Maximize improved bike route link length*(1-improved bike route dummy) 0.2
Maximize off-street bike paths link length*(1-bike path dummy) 0.3
Minimize upslope (upslope/90th percentile observed travel upslope)*length 0.1
Minimize traffic volume (AADT/95th percentile AADT)*length 0.1
Minimize stop signs and traffic 
signals

(stop dummy + signal dummy)*length 0.1

Minimize turns* left turn dummy*100m + right turn dummy*50m 0.5
Minimize adjacent employment 
density†

(emp. density/99th percentile emp. density)*length 0.1

Minimize adjacent commercial land 
use†

commercial share*length 0.1

*turn penalties calculated from observed travel time estimation, converted to distance
†thought to proxy for on-street parking turnover and driveway access frequency  
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  A step-by-step outline of our algorithm is included in an appendix at the end of this paper.  
This algorithm generates  multiple routes for each label and produces different distance weights 
for each label category, which vary as a function of the way the label attribute is measured.  The 
weights themselves have no meaning other than to prevent the inclusion of alternatives in the 
choice set with unrealistically high path lengths relative to the shortest-distance path. The range 
of the distance weight parameters was calibrated to the distribution of observed deviations from 
shortest path over the entire sample, shown in Figure 1.  
  As may be seen, cyclists are quite sensitive to detours. Half the trips were less than 10 
percent longer than the shortest path, and over 95 percent of observed routes were no more than 
50 percent longer. The behavioral rationale for our choice set selection method is that cyclists 
consider routes that deviate significantly from the shortest path only if those routes are attractive 
based on optimizing the value of some positive attribute label. The maximum willingness to 
deviate from the shortest path is a joint function of a route’s performance on a given attribute and 
an unobserved deviation from shortest path preference function. An individual’s preference 
function is assumed to be related to the observed willingness to deviate from shortest paths over 
the entire sample. If separate data were available, those could be used to generate the deviation 
preference distribution instead of the estimation sample. 
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5.3 Choice Set Generation Results 
Replication of observed routes is by far the most common measure of choice set generation 
performance. Results are usually given as the percentage of observed routes “covered” by 
generated routes given overlap thresholds of 70 to 100 percent (Ben-Akiva et al. 1984, Ramming 
2001, Bekhor et al. 2006, Prato & Bekhor 2006, Prato & Bekhor 2007). Prato and Bekhor (2006, 
2007) generalized the overlap measure with a “consistency” index. While reproducing observed 
routes is a necessary condition for reproducing a consideration set, it is not a sufficient one. After 
all, it is the composition of the full choice set that matters, not only that the observed route is 
included. For example, a complete enumeration scheme would always maximize observed route 
overlap, but the resulting choice sets would be of poor quality in most cases.  
  Although our choice set selection method was not calibrated to maximize observed route 
replication, Table 2 shows that it generally outperformed existing techniques. For the overlap 
comparison, we implemented algorithm runs that generated roughly equivalent numbers of 
alternatives to make the comparisons more meaningful, with the exception of the single-route 
labeling method.  The other three methods generate additional routes, at a decreasing rate, as the 
number of iterations is increased. 
   
 
TABLE 2  Generated Choice Set Statistics

Method Alternatives 100% 90% 80% 70% Captives* Runtime†
Proposed 27,626 22.5 29.4 42.3 54.6 15 17h 14m
K-shortest paths 28,089 20.0 24.5 35.8 47.4 0 1h 57m
Simulation 28,029 18.2 21.3 27.9 37.0 0 4h 46m
Labeled routes 10,501 20.4 24.6 35.4 47.1 54 1h 10m
*cases with no alternative (N=1,464)
†runtime on 2.4GHz Intel Core 2 Duo; includes calibration runs for proposed method

% observed routes replicated at least:

 
 
 
  Three results in Table 2 merit further attention. First, the single labeled routes technique is 
clearly the most computationally efficient, suggesting that the idea of attractive routes is useful. 
The single labeled routes, however, fails to find an alternative for 54 trips. When the label 
functions were adjusted to reduce the number of captive routes, the quality of choice sets 
degraded. Second, the proposed method outperforms the other methods on observed route 
replication, although the improvement is not huge. It also results in a small number of captive 
routes; however, inspection showed that these were all either very short routes or routes in sparse 
portions of the network. In such cases travelers may reasonably be captive to the observed route. 
Third, the computation time for the proposed method is much longer. About half of the time is 
spent calibrating the algorithm to the observed deviation distribution. In fairness, multiple runs 
were required to calibrate the other algorithm’s parameters as well, but they are not included here 
to be consistent with existing results. Because the choice set only needs to be generated once, the 
long runtime is not viewed as unreasonably costly. 
  Finally, Figure 2 shows the distribution of choice set size for each method. The tendency 
of K-shortest and simulated shortest paths to choose numerous minor variations in our network 
results in relatively homogeneous choice set sizes.  Both labeled route methods result in smoother 
distributions, which we think are more reasonable. Longer trips and trips in dense parts of the 
network with many attractive alternatives are likely to lead to more options being considered by 
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cyclists.  Subsequent estimation results in this paper use the modified, calibrated labeled routes 
choice sets.  
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Figure 2.  Choice set size distributions for (a) proposed, calibrated labeled routes, (b) K-shortest paths (K=23, 
shortest path added if not found), (c) Simulated shortest paths (20 draws, shortest path added if not drawn), and (d) 
single-permutation labeled routes. Heavy vertical lines show median.  
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6. Base Model Specification 
Four categories of variables were considered for specifying the path-size logit route choice 
model: 

• Delay/effort 
• Navigation 
• Perceived safety 
• Designated bicycle facilities 
• Adjacent land-use 

 
  Table 3 provides variable descriptions. Full estimation results are presented in Table 4. All 
model estimations were performed with the BIOGEME software package (Bierlaire 2003, 2008). 
Parameter estimate magnitudes cannot be directly compared in the multinomial logit model. 
Figure 3 provides a comparison of probability elasticities. 
  Aggregate choice elasticities require care to calculate meaningfully in the route choice 
context. Many network attributes appear relatively rarely in alternatives (e.g. bicycle facilities, 
major unsignalized crossings, highest traffic volume category, etc.). Simply calculating aggregate 
choice elasticity either at sample means or by sample enumeration leads to a downward bias for 
such attributes, since the majority of calculations will be zero. Since route choice alternatives are 
unlabeled (i.e. are not the same across cases), aggregate shares are not meaningful. What interests 
us is sensitivity to attributes when they are present. For these reasons, the following formula was 
used to calculate aggregate choice elasticities: 

 
  
 

(3) 

 
 
for attribute X, choice situation n, alternative j, estimated coefficient β, and estimated probability 
P̂ . The variable δX,j is 1 when variable X is present (i.e. non-zero over a path) and 0 otherwise. 
The basic form of sample enumeration follows Louviere et al. (2000) with the additional delta 
variable adjusting for zero-attribute bias and the denominator sum to account for multiple 
alternatives per case in the route choice context. Louviere at al. (2000) advise weighting cases by 
an alternative’s choice probability, but of course this makes no sense in the route choice context, 
since alternatives are unlabeled. 
  For the two bridge dummy variables, sample enumerated arc elasticities were calculated by 
switching the dummy variable for trips using a bridge. The usual arc elasticity formula for 
probability changes was applied to bridge trips and the sample enumerated similarly to equation 1 
(Louviere et al. 2000): 
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for the n cases which include a river crossing. '
jX  is set to 1 if Xj is 0 and vice versa.  Elasticities 

in both cases presented here are best interpreted as the elasticity of probability to attribute X when 
present.  Since distance enters in log form, elasticities with regard to distance are calculated 
directly from the estimated utility function as BX * (1 - P ) where P  is the sample mean 
probability (Ben-Akiva & Lerman 1985). 

6.1 Delay and effort 
Network variables in this category were thought to mainly increase a cyclist’s travel time and 
effort. In addition to distance, variables measuring upslope and intersection delay were included. 
Since alternative trip lengths varied from 0.2 to 45 kilometers (mean 7.2 km), care was taken to 
ensure meaningful interpretations over the range of distances and also to guard against 
heteroskedasticity. 
  Log distance was chosen over simple distance, piecewise distance functions and 
polynomial formulations for its superior model fit and plausible behavior over the distance range. 
Log distance implies that a given unit of distance has lower disutility as trip length increases, 
with the percentage change in distance yielding a constant utility change. There are two 
complementary explanations for this. First, cyclists may simply compare routes in proportional 
terms, such that 100 meters on a 1 kilometer trip is equivalent to 1000 meters over 10 kilometers. 
Second, it seems likely that most cyclists would have a harder time distinguishing small distance 
differences on long trips, reducing their sensitivity to a given distance change. As can be seen in 
Figure 3, distance has the largest estimated impact on route choice probability with a 1 percent 
change in distance expected to decrease a route’s choice probability by about 5 percent (not 5 
percentage points) at the sample means. 
  The choice of log distance has implications for the form of other variables in the model. 
Point variables, such as intersection features, if entered as counts in the log distance model would 
imply counterintuitive results over the range of trip distances. A count variable would have a 
marginal utility equal to a fixed percentage change in distance. For instance, if a stop sign were 
estimated to cost 50 meters of distance for a 1 kilometer trip, the same stop sign would be worth 
500 meters on a 10 kilometer trip. It seems unlikely that the same feature would be valued so 
differently. For this reason, point features were entered per unit distance. This provides the 
natural interpretation that the value of a point feature such as a stop sign is fixed relative to 
distance. 
  Intersection attributes include signalization, through, and cross volumes. Along with 
movement (through, left, or right) this yields a large number of potential categories. The 
categories presented are the result of many model iterations. Piecewise linear specifications were 
chosen both due to improved model fit and easier incorporation into the regional travel model, 
where precise estimates of local street volumes would be difficult. Entering right turn movements 
at traffic signals and busy intersections separately significantly improved model fit. This seems 
logical, since right turns may allow cyclists to avoid many intersection delays.  
  Significant intersection factors included stop signs, traffic signals, and the interaction of 
signalization with movement, through volume, and cross volume as shown in Table 4 and Figure 
3. Crossing unsignalized intersections with high cross traffic volumes had the greatest estimated 
disutility among intersection variables, suggesting that cyclists are willing to go about 13 percent 
out of their way to avoid an unsignalized major street crossing on an average length alternative 
(7.2 km). Unsignalized left turns across heavy traffic volumes also had pronounced estimated 
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effects on probability, implying a willingness to trade off a 9 percent increase in distance to avoid 
a difficult left turn on an average length trip. 
  A number of forms were tested for terrain. Differences in elevation gain and loss were 
highly correlated across alternatives, and thus gain alone was chosen to measure the degree of 
hilliness along a route. Average slope was estimated to have a relatively large influence on route 
choice decisions. A 1 percent increase in average upslope (e.g. a change from 1 to 1.01 meters 
per hundred) is expected to decrease selection probability by about 1.3 percent. Terrain, along 
with turn frequency, were the most important single factors after distance. Relative to distance, 
the estimation implies cyclists would be willing to travel roughly 27 percent farther to avoid an 
additional 1 percentage point average upslope. 
  Results regarding intersection delay factors are generally consistent with stated preference 
models; however, terrain appears to be considerably more important in a stated preference setting 
(Stinson & Bhat 2003, Sener et al. 2009). Stinson and Bhat (2003) and Sener et al. (2009) both 
found significant, positive effects of moderate hills on route choice, but we could not reproduce 
these findings with our data. It may be that cyclists prefer the idea of a more varied route in a 
stated choice experiment, but in real world situations are more sensitive to time and effort costs. 

6.2 Navigation 
The contiguity of a route was measured by the number of turns onto different streets or trails per 
kilometer. As well as imposing delays, which was captured in the intersection variables, turns 
impose a navigation cost on a cyclist. The sequence of turns and street names must be 
remembered. As Figure 3 reveals, the number of turns was second in importance only to distance. 
A 1.0 percent increase in the number of turns per kilometer results in an expected 1.3 percent 
decrease in route choice probability. On an average length trip, a cyclist would be willing to go 
about 1.5 percent out of her way to avoid an additional turn.  These findings are consistent with 
measurements of “continuity” in stated preference models (Stinson & Bhat 2003, Sener et al. 
2009). 

6.3 Perceived Safety 
The perceived safety or pleasantness of a route was not measured directly but instead proxied by 
traffic volumes along the route. Several formulations were tested. In the end, the proportion of 
travel with each of three volume categories was selected. The volume categories roughly align 
with the street classes secondary arterial, primary arterial, and highway, respectively. The 
proportion of travel on streets with less than 10,000 annual average daily traffic (AADT) 
comprise the reference category. 
  Because bike lanes provide a separate travel lane for cyclists, it was hypothesized that 
they would mitigate the effects of increasing traffic volume. Model fit failed to reject the 
hypothesis that bike lanes fully offset the effects of traffic volume in each category. It is 
somewhat surprising that, on a street with bike lanes, there is no discernable difference at 
different traffic volumes. Three explanations are offered. First, it may be that bike lanes tend to 
be designed to higher standards as traffic volume increases. Second, competing for space may 
constitute the major disutility with increasing traffic volume—speed and noise playing only 
minor roles. Third, higher traffic thoroughfares may be less likely to have on-street parking (for 
which data were not available for this study) and thus provide more of a buffer to the right of 
traffic. Stated preference work has also found that bike lanes completely offset major street traffic 
volume (Stinson & Bhat 2003). 
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  Figure 3 shows that the estimated effect of traffic volume is similar in magnitude to 
intersection features. On streets with no bike lane, a 1 percent increase in the proportion of travel 
with 10-20, 20-30, and 30-plus thousand AADT is expected to reduce selection probability by 
0.17, 0.45, and 1.0 percent, respectively, when such facilities are present. Stinson and Bhat 
(2003) and Sener et al. (2009) found similar relative effects of increasing traffic volume in stated 
preference work.   

6.4 Bicycle Facilities 
Designated bicycle facilities in the Portland region include bike boulevards (described in Table 
3), on-street bike lanes, off-street bike paths, and signed, unimproved bike routes. Bicycle 
facilities are best viewed as bundles of other attributes. For instance, an off-street bike path has 
zero traffic volume, relatively few stops and major street crossings, and is generally contiguous. 
Despite controlling for the range of variables already mentioned, bike boulevards and bike paths 
were estimated to have significant residual effects on route choice.  
  We speculate that the residual value of bike facilities may be due to three additional 
factors not measured in the study. First, cyclists may simply be more knowledgeable about 
designated bike routes because they are signed and also printed on widely used bike maps. 
Second, there may be a perceived increase in safety due to higher numbers of other cyclists using 
a bike facility. Third, pavement quality may be higher on designated bike facilities than on 
competing routes. 
  Estimates of the residual value of bike facilities are provided in Table 4 and Figure 3. The 
elasticities of probability are fairly small, suggesting most of the value of those facilities is 
captured in the other model variables. A 1.0 percent increase in the proportion of bicycle 
boulevards and off-street paths is expected to increase selection probability by 0.16 and 0.249 
percent, respectively. It is worth emphasizing that the entire bundle of bike facility attributes 
likely will have a much greater impact than the residual value suggests. 
  Similar to Stinson and Bhat (2003), we found significantly stronger effects for bicycle 
facilities on bridges. Our model implies bicyclists would be willing to go 34 percent out of their 
way to use a bridge with an improved, separated bicycle facility and 19.5 percent out of the way 
to find a bridge with a bike lane. Our results are only slightly lower than the sensitivities implied 
by the stated preference work of Stinson & Bhat (2003).  

6.5 Land-use and Missing Variables 
Adjacent employment, retail employment, and commercial zoning were tested during model 
development. It was hypothesized that these variables might capture unobserved variables such as 
driveway access, on-street parking, parking turnover, and the general busyness along a route 
segment. None of the land-use variables performed well in the model, and they are not included 
in the final specification. 
  We speculated that several factors might have led to the poor performance of adjacent 
land-use variables. First, land-use is strongly correlated with traffic volumes. Second, the 
measurement of employment variables was available only at the traffic analysis zone (TAZ), and 
several assumptions had to be made in order to join this data to the street link level. Third, it was 
unclear how to handle density; for example, to what degree does employment ten floors up affect 
street-level activity.  Thus, while the land-use data available for this study was not helpful to 
understand route choice decisions, future studies with better data should not ignore land-use out 
of hand.  A few other attributes found to be potentially important in stated preference work were 
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unavailable to us. These include on-street parking, shoulder width, pavement condition, and 
traffic speed (Stinson & Bhat 2003, Sener et al. 2009). 

6.6 Path-size Parameter 
The path-size parameter estimate’s positive coefficient is consistent with theory. It is significantly 
different from 1.0, which would be the expected value if the path-size parameter captures only 
the statistical error introduced by the IIA property of the MNL model. It has been suggested that 
the path-size parameter should not be arbitrarily fixed to 1.0, since it may have a meaningful 
behavioral interpretation (Frejinger and Bierlaire 2007). 
  In our case, estimating the parameter significantly improves model fit. Fixing the path-
size parameter to 1.0 has the effect of reducing the magnitude of the distance coefficient while 
leaving the other parameters more or less unchanged. Since generated alternatives tend to cluster 
around the shortest-path, the greater than expected path-size correction may indicate unobserved 
disutility factors along shortest-path corridors. One plausible explanation is that many shortest 
paths in Portland involve a handful of busy, diagonal arterials that cut across the otherwise 
regular grid. These streets have generally poor riding environments which may not be fully 
captured by our observed attributes. 
  Another interpretation is that cyclists in our sample are less likely to distinguish between 
overlapping routes than statistically expected. That is, cyclists may consider two routes that 
overlap for just 25 percent of their lengths to be more similar than the physical overlap suggests. 
Perhaps they tend to share particularly unpleasant segments such as the diagonal arterials 
mentioned in the previous paragraph. A multi-modal route choice study found that trip “legs” 
rather than distance may sometimes be a better overlap measure (Hoogendoorn-Lanser et al. 
2005).
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Table 3. Variable Descriptions 
Variable Description Mean Present in proportion 

alts (29,090 total) 
Bridge w/ bike lane bridge with on-street bike lane dummy 

variable 
0.05 

Bridge w/ sep. facility bridge with improved, separated bike 
facility 

dummy 
variable 

0.22 

Avg upslope (m/100m) average gross gain per 100m 1.01 1.00 
Distance (km) distance of route in kilometers 7.21 1.00 
Path size (0-1, 1=unique) path size (see section 4 for formula) 0.31 1.00 
Left turn, unsig., AADT 
10-20k (/km) 

left turn without traffic signal and 
parallel traffic volume 10,000-20,000 
per day 

0.07 0.36 

Left turn, unsig., AADT 
20k+ (/km) 

left turn without traffic signal and 
parallel traffic volume 20,000+ per day 

0.03 0.18 

Prop. bike boulevard proportion of route on designated 
bicycle boulevard (signed bike route on 
low traffic volume streets with traffic 
calming, diversion, and enhanced right 
of way) 

0.10 0.53 

Prop. bike path proportion of route on off-street, 
regional bike path (i.e. not minor park 
paths, sidewalks, etc.) 

0.04 0.41 

Prop. AADT 10-20k w/o 
bike lane 

proportion of route on streets with 
traffic volume 10,000-20,000 per day 
without a bike lane  

0.08 0.73 

Prop. AADT 20-30k w/o 
bike lane 

proportion of route on streets with 
traffic volume 20,000-30,000 per day 
without a bike lane 

0.04 0.46 

Prop. AADT 30k+ w/o 
bike lane 

proportion of route on streets with 
traffic volume 30,000+ per day without 
a bike lane 

0.02 0.26 

Traffic signal exc. right 
turns (/km) 

left turns and straight movements 
through traffic signals per kilometer 

1.14 0.90 

Stop signs (/km) turns or straight movements through 
stop signs per kilometer 

1.93 0.95 

Turns (/km) left and right turns per kilometer 2.26 1.00 
Unsig. cross AADT 10-
20k exc. right turns (/km)  

left turns and through movements at 
unsignalized intersections with cross 
traffic volume 10,000-20,000 per day  

0.26 0.72 

Unsig. cross AADT 10k+ 
right turns (/km) 

right turns at unsignalized intersections 
with cross traffic volume 10,000+ per 
day 

0.10 0.44 

Unsig. cross AADT 20k+ 
exc. right turns (/km) 

left turns and through movements at 
unsignalized intersections with cross 
traffic volume 20,000+ per day 

0.10 0.52 
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Table 4. Route Choice Model Estimation Results 
Variable Est. Coeff. Rob. t-stat 
Bridge w/ bike lane 1.26 4.78 
Bridge w/ sep. facility 2.44 9.93 
Gain (m/100m) -1.4 -9.6 
Ln(distance) -5.81 -10.91 
Ln(path size) 1.72 18.83 
Left turn, unsig., AADT 10-20k (/km) -1.29 -3.15 
Left turn, unsig., AADT 20k+ (/km) -2.95 -4.19 
Prop. bike boulevard 0.895 5.31 
Prop. bike path 1.77 5.11 
Prop. AADT 10-20k w/o bike lane -1.56 -4.79 
Prop. AADT 20-30k w/o bike lane -5.29 -6.27 
Prop. AADT 30k+ w/o bike lane -14.6 -6.02 
Traffic signal exc. right turns (/km) -0.237 -4.21 
Stop signs (/km) -0.127 -3.54 
Turns (/km) -0.589 -14.12 
Unsig. cross AADT 10-20k exc. right turns (/km)  -0.804 -5.12 
Unsig. cross AADT 10k+ right turns (/km) -0.508 -1.98 
Unsig. cross AADT 20k+ exc. right turns (/km) -3.86 -9.63 
Number of observations 1,449 
Null log-likelihood -4058.7 
Final log-likelihood -3123.1 
Rho-square 0.231 
Prediction success rate 0.330 
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Figure 3. Aggregate choice elasticities (see text for calculation method)
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7. Trip and Individual Segmentation Models 
In addition to the base model, a number of different segmentation schemes were specified. 
Presented here are two fully segmented route choice models based on trip purpose and gender. In 
general, results were consistent with the base model; however, commuters were significantly 
more averse to distance, delays, and traffic. 

7.1 Commute Trips 
Commute trips are recurring trips, often with arrival deadlines at the work end. In contrast, other 
trips may be more irregular with more flexible arrival times. Commute trips in our sample are 
longer trips (about 25 percent longer, on average) and also more likely to occur during peak 
hours. Table 5 and Figure 4 show the model results and elasticities at sample means for commute 
and non-commute trip segments. 
  Commuting cyclists in our sample are considerably more sensitive to delay factors—
distance, upslope, and stop signs and signals—than non-commuters. This finding is consistent 
with the arrival deadline hypothesis. Commuters also show somewhat more aversion to busy 
streets, perhaps because of peak traffic volumes. Overall model fit is better for the commute 
segment, although the non-commute model predicts more accurately. Unobserved factors would 
seem to be more important for non-commute travel.  For both travel demand modeling and 
policy decisions, our results suggest that direct routes with minimal delays will be more 
significantly attractive to bicycle commuters. 

7.2 Gender 
A set of gender-specific models were specified. Table 6 and Figure 5 present the results. Most 
striking is the similarity between segments in the gender models. The largest apparent difference 
are the intersection variables for the busiest intersections. Female cyclists were considerably 
more sensitive to unprotected left turns across heavy traffic and somewhat more sensitive to 
heavy crossing volumes. Female cyclists in our sample were also somewhat more sensitive to 
distance than male cyclists. In fact, the results probably understate the difference, since male 
cyclists were more frequently commuters (40 percent versus 32 percent of trips), and commuters 
showed a stronger sensitivity to distance. Finally, the female segment showed slightly higher 
preference for bicycle facilities, particularly bike boulevards and both bridge facility types. 
  In our sample of mostly experienced cyclists, male and female cyclists do not show 
systematically different route choice preferences. While some of the small differences here merit 
further study, it appears that gender may be largely irrelevant for route choice among 
experienced cyclists. 
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Table 5. Commute/Non-commute model estimation results 
Variable Est. Coeff. 

Commute 
Est. Coeff. 

Non-Commute 
Bridge w/ bike lane 1.41 1.04 
Bridge w/ sep. facility 2.99 2.43 
Gain (m/100m) -2.20 -1.17 
Ln(distance) -10.7 -4.73 
Ln(path size) 2.10 1.67 
Left turn, unsig., AADT 10-20k (/km)  -0.85 
Left turn, unsig., AADT 10k+ (/km) -3.70  
Left turn, unsig., AADT 20k+ (/km)  -3.61 
Prop. bike boulevard 0.98 0.86 
Prop. bike path 1.84 1.62 
Prop. AADT 10-20k w/o bike lane -3.32 -1.29 
Prop. AADT 20-30k w/o bike lane -8.28 -4.53 
Prop. AADT 30k+ w/o bike lane -28.1 -10.5 
Traffic signal exc. right turns (/km) -0.54 -0.16 
Stop signs (/km) -0.28 -0.11 
Turns (/km) -0.75 -0.57 
Unsig. cross AADT 10-20k exc. right turns (/km)   -0.93 
Unsig. cross AADT 20k+ exc. right turns (/km) -5.04 -3.41 
Number of observations 433 1016 
Null log-likelihood -1343.5 -2715.2 
Final log-likelihood -933.3 -2085.2 
Rho-square 0.305 0.232 
Prediction success rate 0.296 0.342 
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Figure 4. Commute/Non-commute elasticities (see text for calculation method)
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Table 6. Female/Male model estimation results 
Variable Est. Coeff. 

Female 
Est. Coeff. 

Male 
Bridge w/ bike lane 2.84 1.27 
Bridge w/ sep. facility 4.53 2.08 
Gain (m/100m) -1.32 -1.37 
Ln(distance) -6.13 -5.69 
Ln(path size) 1.57 1.87 
Left turn, unsig., AADT 10-20k (/km) -1.25  
Left turn, unsig., AADT 10k+ (/km)  -1.35 
Left turn, unsig., AADT 20k+ (/km) -9.04  
Prop. bike boulevard 1.16 0.725 
Prop. bike path 1.91 1.6 
Prop. AADT 10-20k w/o bike lane -1.39 -1.83 
Prop. AADT 20-30k w/o bike lane -5.41 -5.22 
Prop. AADT 30k+ w/o bike lane -13.9 -14.5 
Traffic signal exc. right turns (/km) -0.208 -0.245 
Stop signs (/km) -0.0709* -0.196 
Turns (/km) -0.557 -0.635 
Unsig. cross AADT 10-20k exc. right turns (/km)  -0.676 -0.838 
Unsig. cross AADT 20k+ exc. right turns (/km) -3.89 -3.86 
Number of observations 652 797 
Null log-likelihood -1784.3 -2274.4 
Final log-likelihood -1351.1 -1689.1 
Rho-square 0.243 0.257 
Prediction success rate 0.359 0.338 
* not significant at 5% level 
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Figure 5.  Female/Male elasticities (see text for calculation details) 
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8. Implementation 
The bicyclist route choice model described in this paper will be implemented as part of the Metro 
regional travel forecasting system.  The bicycle route choice and the bicycle network model, 
hereafter "the bike model," will be independent components of the system and will be utilized in 
a phased implementation plan.  The bicycle network includes nearly all of the local streets in the 
region as well as off-street bike trails and is therefore much finer-grained in its detail than the 
Metro highway network.  
 In terms of bicyclist user classes, our analysis revealed some significant differences by 
trip context; therefore, the Metro model implementation will maintain market segmentation by 
work-commute and non-work-commute purposes.  Gender-based segmentation showed little 
differences between groups and is not a dimension of segmentation maintained by Metro for its 
current suite of trip-based models. 
 As a first step towards integration, the bike model will be used to generate representative 
zone-based bicyclists' generalized cost path information, otherwise known as "skims," which will 
then be used to re-estimate the Metro mode choice model.  Metro maintains a fairly detailed 
2032-zone system, and has provided representative starting points for bicycle trips within each 
zone.   The bike model skims will be expressed in terms of zone-to-zone generalized costs (dis-
utilities) computed directly from the route choice model and calculated as a probability-weighted-
average of competing paths; distances, calculated as a probability-weighted-average of competing 
paths; and travel times, computed using a special bicyclist travel time function applied to 
generalized least cost paths and weighted probabilistically similar to distance. 
 The bicyclist route travel time function is a linear model of travel times applied to the 
generalized least cost path determined through the route choice model.  It was estimated from the 
same GPS data used to develop the route choice model and includes variables such as distance, 
slope, intersection and turning movement variables, and through- and crossing-traffic volume 
effects. 
 In the second phase, full implementation, the newly specified mode choice model will be 
in place.  Trips that the model predicts as "bike" through the mode choice process will be 
assigned to the bike network in a single-pass stochastic assignment.  This will enable Metro to 
project dispersion among reasonable competing paths through the bike network and usage levels 
of any existing or proposed bike facilities along those paths.  In addition, analysts will be able to 
infer changes in bicycle rider welfare for competing investment scenarios by comparing changes 
in utility; however, this will be initially limited to changes to bike infrastructure itself or any 
connectivity improvements that result from changes to the highway network. 
 For this second phase, it is important to note that this is a static assignment without 
feedback.  Bicycle facilities are not considered to be capacity constrained.  Projected volumes 
from the auto assignment portion of the model system will not be fed back to the bike model 
network.  This limitation is mainly due to the computational burden of iterating between the auto 
assignment, bike model and demand-side model components, but also because implementation of 
such a feedback mechanism requires further study of its dynamics.  The value of feedback to the 
current variable specification would be to affect route utility with respect to the disutility of 
through- and crossing-traffic volumes, stratified by volume groups.  It is planned to provide this 
full feedback to the bike model in a longer-term third phase, such that the disutility of alternative 
bike routes is affected by assigned auto volumes.  In addition to the added computational time, 
this would require reconsideration of the volume group designations to avoid potential "cliff" 
effects that could produce oscillation in the system. 
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9. Conclusions 
The regional bicycle model presented in this paper is novel in its use of GPS revealed preference 
data, collected specifically for the purposes of tracking bicyclists' route choice behavior.  
Coupled with a highly detailed bicycle network model and careful coding of observed paths, the 
model's data backplane is considered to be highly accurate in its portrayal of revealed choices and 
the path attributes faced by respondents.  The trips represented in this model were primarily 
utilitarian in nature, at least a quarter of which were for work purposes. 
 The GPS survey was supported and corroborated by respondent demographic and attitude 
information.  We used this supporting data to develop descriptive profiles of respondents 
preferences for route choice attributes and used this to inform the development of a novel choice 
set selection algorithm.  Labeled attributes important to the respondents were balanced against 
observed deviations from shortest distance paths to create choice set alternatives that permitted 
multiple permutations from each label category, subject to a maximum deviation from the 
shortest path.  The results of this choice set generation algorithm indicated a superior 
performance over comparable implementations of K-shortest paths, simulation methods, and one-
permutation labeled approaches. 
 The route choice model was formulated as a Path-Size Logit model, with a path-size 
correction factor to account for overlapping alternatives based on network link lengths.  Utility 
functions were specified to account for path distance, in log form, and other attributes relative to 
total path distance.  In doing so, the model avoids problems of heteroskedasticity and intuitively 
accounts for perception variance over trip length.  The most significant results indicate that 
bicyclists are most sensitive to total path length, but also avoiding turns across heavily-traveled 
arterials and high-traffic-volume through streets without separate bike facilities.  Minimizing 
elevation gain, stops and turns in general were also significant. 
 Whereas bike infrastructure may be viewed as providing a bundle of attributes, including 
avoidance traffic volumes and minimizing stops and turns, our estimation results show strong 
residual preferences for the provision of separated bikeways along bridge crossings, followed by 
bike lanes on bridges, off-street multi-use paths, and bike boulevards.  The results also indicate 
that striped bike lanes serve to completely offset the disutility of higher traffic volumes, but do 
not have a residual value beyond that.  Our results are remarkably consistent with some recent 
stated preference work done by others. 
 In terms of market segmentation, our fully segmented models did not show an appreciable 
difference between males and females among these experienced cyclists, except for a stronger 
female preference for bike infrastructure on bridge crossings and to avoid left turns at un-
signalized high-volume intersections.   
 There were more significant differences, however, by trip purpose.  Commuter choice 
elasticities were much more sensitive to total trip distance, avoidance of high-volume streets 
without bike lanes, and avoiding elevation gain, compared with non-commute trips.  Additional 
segmentation by income and other socioeconomic attributes was not supported by the data. 
 The final route choice model is being implemented as part of the larger Portland regional 
travel forecasting system.  It will be used to inform the regional mode choice mode with better 
estimates of bicyclists' generalized cost of travel and will also be used to assign bicycle trips to 
the bike network to project facility usage.  Areas for future research include full integration with 
the Metro area travel model such that there is feedback between the highway assignment steps 
and the bike model, allowing the bicycle route choices to vary in response.  
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Appendix:   Steps in Choice Set Generation Method 
 
In outline form, our route choice set generation method was implemented as follows: 

• Identify shortest paths for each origin-destination pair. 
• Define a set of attribute labels (Table 1). 
• For each label, specify a label cost function of form iii xcL *)1(* ββ −+= , where Li is 

the label value of link i, β is a weighting parameter between 0 and 1, ci is the base cost 
(distance or time) of link i, and xi is an attribute cast as a disutility.  For example, xi might 
be the distance link i traverses without a bike facility. 

• Set an initial minimum value for β and a step size that specifies how much β will decrease 
with each iteration.  At the limits, β=0 returns the path that minimizes attribute x 
regardless of distance, and β=1 returns the shortest path. 

• Starting with β = 1 – step size, minimize the label cost function, and with each iteration 
decrease β by the step size until β<min(β).  The combination of step size and min(β) 
determine the maximum number of unique routes each label generates.  For example, with 
min(β)=0.1=step size, a maximum of nine routes would be returned. 

• Calibrate min(β) by fitting the generated shortest path deviation distribution to the 
observed distribution.  Optimizing a fit statistic such as minimizing the Kolmogorov-
Smirnov (K-S) test statistic could be implemented; however, we fit by eye using quantile-
quantile (Q-Q) plots.  It was convenient to first fit the observed route deviations to a 
known distribution to minimize the effect of outliers and different sample sizes.   

• Repeat the process for each label.  Combine generated alternatives, observed routes, and, 
if desired, shortest paths.  Duplicate and, if desired, highly overlapping routes should be 
filtered. 

 
Specific calibration and filtering were implemented using the following steps: 

• Perform initial label run with min(β)=0.5 and step size=0.1. 
• Calibrate to fitted observed distribution of shortest path deviations.  The calibration does 

not need to be overly precise.  Using Q-Q plots like those in Figure 1, each label could be 
fitted in one to four iterations by changing min(β) in 0.1 increments.  Table 1 includes 
calibrated min(β) values. 

• Step size was left at the initial value of 0.1, which seemed to strike an acceptable balance 
among choice set size, route variation, and computation time. 

• Generated labels were combined, shortest paths and observed paths were added if not 
generated, and routes overlapping more than 90 percent with others were removed. 
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