Lane Area Transportation Safety and Security Plan – Stakeholder Meeting #1
Meeting Agenda

1. Planning Process Overview
 • Where are we?
 • Where do we want to go?
 • How do we get there?

2. Today’s Meeting:
 • Where are we? (Data Analysis)

3. Next Meeting:
 • Where do we want to go? (Focus Groups/Emphasis Areas)
1. Why are we doing this?
 • Requirements: Central Lane Metropolitan Planning Organization (CLMPO or MPO)
 • Opportunities: Countywide

2. What are the plans?
 • Two Plans (One Process): MPO, Lane County
 • Integration into Transportation System Plans (TSPs)
1. What’s the timing of this consolidated process?
 • 8 to 10 months (adopted/approve April/May)

2. Who will be involved?
 • 3 to 5 SAT meetings
 • 2 to 4 Focus Groups
Roles and Responsibilities

1. Stakeholder Advisory Team (SAT)
 - Provide traffic safety expertise
 - Review meeting materials
 - Attend SAT Meetings
 - Ask questions
 - Come up with Solutions!

2. Project Management Team (PMT)
 - Facilitate planning process
 - Provide materials, data, resources
 - Come up with Solutions!
We need each other to see the whole elephant
The Data

1. Fatal Accident Reporting System (FARS)
 - Data for entire U.S.
 - 1975-2013
 - Fatal crashes only

2. Oregon DOT Crash Data System (CDS)
 - Lane County
 - Detailed data for 2007-2013
 - Spatial location
Things to consider while reviewing data

1. Data limitations
2. Very few relative comparisons with other areas
3. Interpreting percentages
4. Project managers will do their best to tell you what they saw, not what to think

<table>
<thead>
<tr>
<th>Year</th>
<th>Vital Statistics</th>
<th>ODOT Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>2008</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>2009</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>2010</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>2011</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>2012</td>
<td>37</td>
<td>32</td>
</tr>
<tr>
<td>2013</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>
Data review outline

1. Historical trends and perspective for US, Oregon and Lane County

2. Regional crashes top causes: alcohol, speed, distracted driving, and others

3. Regional crashes: road classification and infrastructure characteristics

4. Modal summaries and behavior
Perception vs. Observed

- Pop quiz results
 Discussion?

- How does the Stakeholder Advisory Team Perception Compare with Reality of Traffic Fatalities in Lane County?

![Chart showing Perception vs. Reality of Traffic Fatalities in Lane County with a median difference of 52%](chart.png)
Traffic Collisions’ Toll on Human Life

<table>
<thead>
<tr>
<th>Traffic Fatalities</th>
<th>1975-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1,658,165</td>
</tr>
<tr>
<td>Oregon</td>
<td>20,283</td>
</tr>
<tr>
<td>Lane County</td>
<td>1,816</td>
</tr>
</tbody>
</table>

- Oregon - In last 3 years more Oregonians killed in traffic crashes than soldiers, seamen and airmen killed in WWII during nearly 4 years of fighting.

- Lane County - Same number of Lane County residents perish in traffic crashes every 2 ½ years as commuter flight capacity for Eugene to Portland.

Traffic Collisions' Toll on Human Life

<table>
<thead>
<tr>
<th>Oregon</th>
</tr>
</thead>
</table>

STATE SUMMARY OF WAR CASUALTIES

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead</td>
<td>880</td>
</tr>
<tr>
<td>Combat</td>
<td></td>
</tr>
<tr>
<td>Prison Camp</td>
<td>33</td>
</tr>
<tr>
<td>Missing</td>
<td>9</td>
</tr>
<tr>
<td>Wounded</td>
<td>816</td>
</tr>
<tr>
<td>Released Prisoners</td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>1,859</td>
</tr>
</tbody>
</table>

KILLED IN ACTION, DIED OF WOUNDS, OR LOST LIVES AS RESULT OF OPERATIONAL MOVEMENTS IN WAR ZONES

National Archives: State Summary of War Casualties from World War II for Navy, Marine Corps, and Coast Guard Personnel from: Oregon
Leading Causes of Death in Lane County

Leading Causes of Death, by Age Group, Lane County, Oregon 2009-2013

<table>
<thead>
<tr>
<th>Rank</th>
<th>< 1 year old</th>
<th>1 to 14</th>
<th>15 to 24</th>
<th>25 to 44</th>
<th>45 to 64</th>
<th>65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perinatal Conditions (247)</td>
<td>Accidents (unintentional injuries) (3.01*)</td>
<td>Accidents (unintentional injuries) (18.8)</td>
<td>Accidents (unintentional injuries) (38.2)</td>
<td>Malignant neoplasms (202)</td>
<td>Malignant neoplasms (960)</td>
</tr>
<tr>
<td>2</td>
<td>Congenital Malformations (68.9)</td>
<td>Malignant Neoplasms (2.63*)</td>
<td>Intentional self-harm (suicide) (9.58)</td>
<td>Intentional self-harm (suicide) (23.5)</td>
<td>Diseases of heart (73.3)</td>
<td>Diseases of heart (895)</td>
</tr>
<tr>
<td>3</td>
<td>SIDS (57.4*)</td>
<td>Intentional Self-Harm (suicide) (**s)</td>
<td>Malignant neoplasms (2.05*)</td>
<td>Malignant neoplasms (18.2)</td>
<td>Accidents (unintentional injuries) (48.4)</td>
<td>Chronic lower respiratory diseases (335)</td>
</tr>
<tr>
<td>4</td>
<td>Accidents (unintentional injuries) (34.4*)</td>
<td>Assault (Homicide) (**s)</td>
<td>Assault (Homicide) (**s)</td>
<td>Alcohol-induced deaths (10.5)</td>
<td>Alcohol-induced deaths (44.5)</td>
<td>Alzheimer's disease (270)</td>
</tr>
</tbody>
</table>

Leading Causes of Injury Deaths by Age Group, Lane County 2009-2013

<table>
<thead>
<tr>
<th>Rank</th>
<th>< 1 year old</th>
<th>1 to 14</th>
<th>15 to 24</th>
<th>25 to 44</th>
<th>45 to 64</th>
<th>65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unspecified Non-Transport accidents (**)</td>
<td>Motor Vehicle Accidents (**)</td>
<td>Motor vehicle Accidents (8.56)</td>
<td>Accidental Poisoning (23.0)</td>
<td>Accidental Poisoning (19.4)</td>
<td>Falls (119)</td>
</tr>
<tr>
<td>2</td>
<td>Accidental Poisoning (**)</td>
<td>Unspecified Non-Transport Accidents (**)</td>
<td>Accidental Poisoning (5.82)</td>
<td>Motor vehicle Accidents (8.85)</td>
<td>Motor vehicle Accidents (12.8)</td>
<td>Unspecified Non-Transport Accident (19.9)</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>Accidental Drowning (**)</td>
<td>Accidental Drowning (2.05*)</td>
<td>Unspecified Non-Transport Accidents (2.79)</td>
<td>Falls (5.15)</td>
<td>Motor Vehicle Accidents (14.5)</td>
</tr>
</tbody>
</table>

* Rate may be statistically unreliable; interpret with caution
** Rate supressed; statistically unreliable

Source: Oregon Death Certificates: Center for Health Statistics, Center for Public Health Practice, Public Health Division, Oregon Health Authority. Query Date: 10/07/2015 OPHAT v 2.0

Traffic Crashes a Leading Cause of Injury Death in Lane County

- Traffic Crashes a Leading Cause of Injury Death in Lane County
- Motor Vehicle Accidents in top 3 cause of Injury Related Deaths for most age groups, especially younger people
1. Historical trends and perspective for US, Oregon and Lane County

2. Regional crashes top causes: alcohol, speed, distracted driving, and others

3. Regional crashes: road classification and infrastructure characteristics

4. Regional crashes by travel mode
Historic Traffic Fatalities: U.S. and Oregon

Total average annual fatalities 2009-2013

- United States – 33,172
- Oregon - 335
- Lane County -33

- Oregon tends to mirror national trends
Oregon fatalities down from peak in early 1970s, but even with late 1940s

• Traffic fatality rate 90% decrease but total fatalities decreased by 9%

• Fatality rate affected by
 • Road design
 • Vehicles design
 • Emergency response
 • VMT
Traffic Safety and Measures of Driving: Vehicle Miles Traveled (VMT)

- Statewide VMT increased 7 fold since 1940s, doubled since 1970s
- Vehicle miles traveled began to flatten in early 2000s
- Late 2000s recession reduced VMT
- VMT may be picking up and debate about future of VMT continues
Historic Traffic Fatalities: Oregon & Lane County

- Lane County likely mirrors Oregon historic trends
- Lane County averaged 30 fatal crashes per year the last 7 years
- With lower numbers comes greater year to year variation
Historic Traffic Fatalities: Lane County by Mode

- More change in motorized traffic fatalities
- Less change in non-motorized fatalities
1. Historical trends and perspective for US, Oregon and Lane County

2. Regional crashes top causes: alcohol, speed, distracted driving, and others

3. Regional crashes: road classification and infrastructure characteristics

4. Regional crashes by travel mode
Alcohol Involved Traffic Fatalities: Proportion of All Traffic Fatalities

- Last few years, around, 38% of all fatalities alcohol related
- About the same for Oregon and U.S.
Historic Alcohol Involved Traffic Fatalities

Total Alcohol Related Traffic Fatalities 1975-2013
- United States – 633,555
- Oregon – 8,661
- Lane County - 730

Total average annual alcohol involved fatalities 2009-2013
- United States – 11,987
- Oregon - 125
- Lane County - 11
Central Lane MPO Details

- **2010 Population**
 - MPO: 245,000
 - Lane County: 351,000

- **2010 Employment**
 - MPO: 116,000
 - Lane County: 141,000
Year-to-year variation leads us to use aggregate data

Makes understanding current problem simpler, fewer major network, cultural, economic shifts

Helps to elevate system level problems as opposed to project level problems

<p>| All Crashes by Area and Severity (2007-2013) |</p>
<table>
<thead>
<tr>
<th>CLMPO</th>
<th>Non-CLMPO</th>
<th>Lane County</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>168</td>
<td>240</td>
<td>Fatal (1)</td>
</tr>
<tr>
<td>433</td>
<td>396</td>
<td>829</td>
<td>Severe Injury (2)</td>
</tr>
<tr>
<td>12,239</td>
<td>4,651</td>
<td>16,890</td>
<td>Injury (3,4)</td>
</tr>
<tr>
<td>18,617</td>
<td>6,170</td>
<td>24,787</td>
<td>Crash</td>
</tr>
</tbody>
</table>

Code 1 is used for participants who die as a result of injuries sustained in the crash. For the purposes of motor vehicle traffic crash classification, the death must occur within thirty days (24-hour periods) from the time of the crash.

Code 2 is used for participants who suffer incapacitating injuries. An incapacitating (severe or major) injury is a non-fatal injury which "prevents the injured person from walking, driving or normally continuing the activities the person was capable of performing before the injury occurred". Examples of incapacitating injuries include broken bones, severe bleeding, unconsciousness, etc.

Code 3 is used for participants who suffer non-incapacitating (moderate) injuries. A non-incapacitating injury not severe, but is "evident to observers at the scene of the accident in which the injury occurred". Examples of non-incapacitating injury include lumps, bruises, abrasions, swelling, minor bleeding, etc.

Code 4 is used for participants who report injury, but no injuries are apparent. Examples of possible/minor injury include momentary lapse of consciousness, laint of pain, etc.
What causes traffic crashes?

- Landmark study (1979) shows driver behavior primary contributor in crashes
- Vehicles safer
- Road factors (icy roads, poor condition) likely to be fewer now

Source: Treat 1979

Figure 2 Contributing Factors to Crashes
Traffic Fatalities Causes: Speed and Alcohol 2007-2013

- Speed and alcohol a contributing factor in:
 - 26% of MPO fatal and severe injuries
 - 50% of Non-MPO fatal and severe injuries
 - 38% of county fatal and severe injuries
Traffic Crashes by Injury Severity for Reported Cell Phone Use

<table>
<thead>
<tr>
<th>Injury Severity</th>
<th>CLMPO</th>
<th>Non-CLMPO</th>
<th>Lane County</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1.67%</td>
</tr>
<tr>
<td>Severe Injury</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>0.72%</td>
</tr>
<tr>
<td>Injury</td>
<td>112</td>
<td>37</td>
<td>149</td>
<td>0.88%</td>
</tr>
<tr>
<td>Crashes</td>
<td>124</td>
<td>33</td>
<td>157</td>
<td>0.63%</td>
</tr>
</tbody>
</table>

2015 AAA Teenage Distracted Driving Study
1. Cell phone use varied by crash type
 • 34% of run-off-road crashes involved phone
 • 18% of rear-end crashes involved phone
 • Drivers using phone had eyes off the road for 4.1 seconds
2. Passengers a more significant distraction

• Local data less reliable for determining distracted driving
• National studies give clearer indication of magnitude of problem
Causes Other than Speed and Alcohol

- Behavior primary cause of fatal crashes
- Information about inattention is limited
Data review outline

1. Historical trends and perspective for US, Oregon and Lane County

2. Regional crashes top causes: alcohol, speed, distracted driving, and others

3. **Regional crashes: road classification and infrastructure characteristics**

4. Regional crashes by travel mode
Transportation Network Descriptions

- **Classifications** meant to characterize the function of the street
- Different levels within each classification, e.g. minor and major
- Also rural and urban designations

<table>
<thead>
<tr>
<th>Functional System</th>
<th>Services Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>Provides the highest level of service at the greatest speed for the longest uninterrupted distance, with some degree of access control.</td>
</tr>
<tr>
<td>Collector</td>
<td>Provides a less highly developed level of service at a lower speed for shorter distances by collecting traffic from local roads and connecting them with arterials.</td>
</tr>
<tr>
<td>Local</td>
<td>Consists of all roads not defined as arterials or collectors; primarily provides access to land with little or no through movement.</td>
</tr>
</tbody>
</table>
Transportation Network Descriptions: Urban Roads

Urban Local
Ex: D St. and 9th

Urban Minor Arterial
Ex: 18th Ave. near Chambers

Urban Collector
Ex: 28th Ave. near Chambers

Urban Principle Arterial – Other
Ex: Main St. (Hwy-126)
Transportation Network Description: Rural Roads

Rural Local
Ex: Evers Road N. Hwy 126

Rural Collector
Ex: Clear Lake Road

Rural Principle Arterial – Interstate
Ex: I-5 outside of urban area

Rural Principle Arterial – Other
Ex: Florence Highway (Hwy-126)
• Speed a *contributor* in:
 o 37% of county fatal crashes
 o 40% of non-MPO fatal crashes
 o 38% of MPO fatal crashes
Traffic Crashes by Injury Severity by Functional Classification—2007-2013

- Rural Area Top Areas
- Rural Major Collectors
- Rural Principle Arterials – Other
- Urban Area Top Areas
- Urban Minor Arterial
- Urban Principle Arterial

Why are so many crashes occurring on these road?
Traffic Crashes Rates by Injury Severity by Functional Classification—2007-2013

fatalities per VMT by roadway classification for year selected above (for all years if no year selected above)

- Urban Local: 0.38
- Urban Collector: 0.52
- Urban Minor Arterial: 1.05
- Urban Principal Arterial - Other: 1.13
- Urban Principal Arterial - Other Freeways and Exp: 0.30
- Urban Principal Arterial - Interstate: 0.20

Serious Injuries per VMT by Roadway Classification for Year Selected Above (For All Years if no year selected above)

- Urban Local: 2.36
- Urban Collector: 5.63
- Urban Minor Arterial: 6.18
- Urban Principal Arterial - Other: 5.57
- Urban Principal Arterial - Other Freeways and Exp: 1.59
- Urban Principal Arterial - Interstate: 1.13
Data review outline

1. Historical trends and perspective for US, Oregon and Lane County

2. Regional crashes top causes: alcohol, speed, distracted driving, and others

3. Regional crashes: road classification and infrastructure characteristics

4. **Regional crashes by travel mode**
Fatalities and Severe Injuries: Modal Comparison

- 24% of the MPO fatalities are people walking or riding a bike.
- Non-motorized involved fatalities likely disproportionate compared to exposure.
- 94% of Non-MPO area fatalities and severe Injuries are motorized transport.
Fatalities and Severe injury by Collision Type

- Collisions with fixed objects most common, rural areas biggest collision type
- Passenger on passenger vehicle crashes common
- In urban area, passenger vehicle and pedestrian and bicycle collision more common
Crash Outcomes for Drivers and Passengers, People Walking and Biking (2007-2013)

<table>
<thead>
<tr>
<th></th>
<th>Drivers & Vehicle Passengers</th>
<th>Person on Bike</th>
<th>Person Walking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury and Fatal</td>
<td>10,651</td>
<td>645</td>
<td>412</td>
</tr>
<tr>
<td>Crashes</td>
<td>23,727</td>
<td>648</td>
<td>412</td>
</tr>
<tr>
<td>Percent Resulting in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury or Fatality</td>
<td>45%</td>
<td>99.5%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Unprotected users more likely to suffer death or injury
- Property damage only crashes only unlikely in not-motorist involved crashes
- PDO crashes less likely to be reported
Fatalities and Total Injuries: People Using Motorized Transport

- MPO crashes trending upward
- Significant number of annual injuries
Fatalities and Total Injuries: People Walking

- More pedestrian crashes in MPO area
- Pedestrian fatality and injury steady
Fatalities and Total Injuries: People Riding a Bike

- Bicycle fatality and injury steady
- Bicycle crashes occur more frequently in MPO area
Fatalities by Error: Motorized Crashes

Motorized Crash Fatalities by Error Type
2007-2013

<table>
<thead>
<tr>
<th>Error Type</th>
<th>CLMPO</th>
<th>NonCLMPO</th>
<th>LaneCounty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rackless driving (per PAR)</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Ran off road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed to yield right-of-way to pedestrian</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed to maintain lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed to dim lights (until 4/1/97) / Inattention (after 4/1/97)</td>
<td>34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving too fast for conditions (Not exceeding posted speed)</td>
<td>5%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Driving in excess of posted speed</td>
<td>5%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Did not have right-of-way</td>
<td>5%</td>
<td>5%</td>
<td>12%</td>
</tr>
</tbody>
</table>

- Recorded error might not tell us much in motorized transport crashes
Crash Error in Pedestrian Involved Crashes

ODOT Data Recorded Error in Pedestrian Involved Crashes 2007-2013

- **Primarily Pedestrian Error**: 42%
- **Primarily Motorist Error**: 48%
- **Primarily Both Error**: 10%

Vehicle and Non-Vehicle Error in Ped Crashes 2007-2013

- Vehicle Error: Failed to yield right-of-way to pedestrian: 30%
- Vehicle Error: No error, Ped Error: Crossing between intersections: 21%
- Vehicle Cause: Inattention, Ped Cause: No error: 5%
- Vehicle Error: No error, Ped Error: No error: 4%
- Vehicle Error: No error, Ped Error: Disregarded traffic signal: 4%
- Vehicle Error: No error, Ped Error: Did not have right-of-way: 3%
Pedestrian Crashes by Functional Classification and Intersection

Location of Pedestrian Crashes 2007-2013

- **Total Crashes**
 - 0
 - 15
 - 30
 - 45
 - 60
 - 75

- **Pedestrian Location**
 - Unknown location
 - Outside trafficway boundaries
 - Other, not in roadway
 - Not at intersection - within traffic right-of-way
 - Not at intersection - on shoulder
 - Not at intersection - on median
 - Not at intersection - inside mid-block crosswalk
 - Not at intersection - in roadway
 - Not at intersection - in bike path
 - Not at intersection - on sidewalk
 - At intersection - not in roadway
 - At intersection - inside crosswalk
 - At intersection - in roadway, xwalk avail unknown
 - At intersection - in roadway, outside crosswalk

- **Functional Classification**
 - Rural Major Collector
 - Urban Collector
 - Urban Minor Arterial
 - Urban Principal Arterial
 - Other

- **Key Observations**
 - Large number of pedestrian crashes occur on arterials
 - Pedestrians being hit while inside crosswalk
Bicycle Crashes by Functional Classification and Road Characteristic

- Large number of bicycle crashes occur on arterials
- Intersections and driveways common locations for bicycle crashes

Location of Bicycle Crashes 2007-2013

<table>
<thead>
<tr>
<th>Bicycle Location</th>
<th>RURAL MAJOR COLLECTOR</th>
<th>URBAN COLLECTOR</th>
<th>URBAN LOCAL</th>
<th>URBAN MINOR ARTERIAL</th>
<th>URBAN PRINCIPAL ARTERIAL</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tunnel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Transition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Straight Roadway</td>
<td>2</td>
<td>15</td>
<td>10</td>
<td>23</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Open access or turnout</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>6</td>
<td>69</td>
<td>43</td>
<td>168</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Grade (vertical curve)</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Driveway or Alley</td>
<td>5</td>
<td>37</td>
<td>23</td>
<td>57</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Curve (horizontal curve)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bridge Structure</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total Crashes
Two killed and one seriously injured in single car crash in Lane County
Discussion

- Some conclusions?
- New goals?
- What questions remain?
Next steps

1. Emphasis Areas
 • Online crash data explorers – email links

2. Focus groups
 • Should these mirror focus groups?

3. Public Involvement?
 • What do we need from the public?
 • How to make the public’s input most effective

4. Next meeting expectations
Contact

• Josh Roll - Central Lane MPO
 - jroll@lcog.org
 - 541-682-2454

• Becky Taylor - Lane County
 - Becky.TAYLOR@co.lane.or.us
 - 541-682-6932
Traffic Fatalities and Severe Injuries by Seatbelt Use – 2007-2013

- High seat belt use throughout county