Appendix K: LCOG TripBased Travel Demand Model Methodology Report

LCOG "Kate" v1.0 Trip-Based Travel Demand Model
 Methodology Report

December 2020

Prepared by Metro and Parametrix on behalf of the Lane Council of Governments

Table of Contents

2020 Kate v1.0 Trip-Based Demand Model 8
A Input Data 9
A. 1 Land Use and Access Measurement Data 9
A. 2 Travel Time Data 10
A. 3 Trip Cost Data 12
A. 4 Transportation Service Inputs 12
B Pre-Generation 13
B. 1 Worker Model 13
B. 2 Auto Ownership Model 14
B. 3 Children Model 16
C Trip Generation 17
C. 1 HBW (Home-Based Work) 17
C. 2 HBshop (Home-Based Shopping) 18
C. 3 HBrec (Home-Based Recreation) 18
C. 4 HBoth (Home-Based Other) 19
C. 5 NHBW (Non-Home-Based Work) 19
C. 6 NHBNW (Non-Home-Based Non-Work) 20
C. 7 HBcoll (Home-Based College) 21
C. 8 HBsch (Home-Based School). 21
D Multimodal Accessibility Functions 23
D. 1 Variables Used in Multimodal Accessibility Functions. 24
D. 2 HBW (Home-Based Work) 25
D. 3 HBshop, HBrec, HBoth (Other Home-Based) 28
D. 4 NHBW (Non-Home-Based Work). 30
D. 5 NHBNW (Non-Home-Based Non-Work) 32
D. 6 HBcoll (Home-Based College) 33
E Destination Choice 36
E. 1 Variables Used in Destination Choice Models 36
E. 2 HBW (Home-Based Work) 37
E. 3 HBshop, HBrec, HBoth (Other Home-Based) 39
E. 4 NHBW \& NHBNW (Non-Home-Based) 41
E. 5 HBcoll (Home-Based College) 42
E. 6 HBsch (Home-Based School) 42
F Mode Choice Model 43
F. 1 Variables Used in Mode Choice Models 44
F. 2 HBW (Home-Based Work) 45
F. 3 HBshop, HBrec, HBoth (Other Home-Based) 47
F. 4 NHBW (Non-Home-Based Work) 50
F. 5 NHBNW (Non-Home-Based Non-Work) 52
F. 6 HBcoll (Home-Based College) 53
F. 7 HBsch (Home-Based School). 56
G Time of Day Factors 57
Appendix A - Metro Model Forecasting Model Structure 62

List of Tables

TABLE 1. Peak Factors Applied to Skims in Mode Choice Models 11
TABLE 2. Worker Model 14
TABLE 3. Auto Ownership Model 15
TABLE 4. Children Model 16
TABLE 5. HBW Production Rates 17
TABLE 6. HBshop Production Rates 18
TABLE 7. HBrec Production Rates 18
TABLE 8. HBoth Production Rates 19
TABLE 9. NHBW Household Production Rates 19
TABLE 10. NHBNW Production Rates 20
TABLE 11. HBcoll Production Rates 21
TABLE 12. HBsch Production Rates 22
TABLE 13. HBW Multimodal Accessibility Functions - Auto Modes 27
TABLE 14. HBW Multimodal Accessibility Functions - Transit Modes 27
TABLE 15. HBW Multimodal Accessibility Functions - Nonmotorized Modes 28
TABLE 16. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Auto Modes 29
TABLE 17. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Transit Modes 30
TABLE 18. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Nonmotorized Modes 30
TABLE 19. NHBW Multimodal Accessibility Functions - Auto Modes 31
TABLE 20. NHBW Multimodal Accessibility Functions - Transit Modes 32
TABLE 21. NHBW Multimodal Accessibility Functions - Nonmotorized Modes 32
TABLE 22. NHBNW Multimodal Accessibility Functions - Auto Modes 33
TABLE 23. NHBNW Multimodal Accessibility Functions - Transit Modes 33
TABLE 24. NHBNW Multimodal Accessibility Functions - Nonmotorized Modes 33
TABLE 25. HBcoll Multimodal Accessibility Functions - Auto Modes 34
TABLE 26. HBcoll Multimodal Accessibility Functions - Transit Modes 35
TABLE 27. HBcoll Multimodal Accessibility Functions - Nonmotorized Modes. 35
TABLE 28. Zonal Size Variables Used in Destination Choice Models 37
TABLE 29. HBW Destination Choice Model 38
TABLE 30. HBshop, HBrec, HBoth LogSum Weights 39
TABLE 31. HBshop, HBrec, HBoth Destination Choice Models 40
TABLE 32. Non-Home-Based Destination Choice Models 41
TABLE 33. HBcoll LogSum Weights 42
TABLE 34. HBW Mode Choice Model - Auto Modes 46
TABLE 35. HBW Mode Choice Model - Transit Modes 46
TABLE 36. HBW Mode Choice Model - Nonmotorized Modes 47
TABLE 37. HBshop, HBrec, HBoth Mode Choice Model - Auto Modes 48
TABLE 38. HBshop, HBrec, HBoth Mode Choice Model - Transit Modes 49
TABLE 39. HBshop, HBrec, HBoth Mode Choice Model - Nonmotorized Modes 50
TABLE 40. NHBW Mode Choice Model - Auto Modes 51
TABLE 41. NHBW Mode Choice Model - Transit Modes 51
TABLE 42. NHBW Mode Choice Model - Nonmotorized Modes 51
TABLE 43. NHBNW Mode Choice Model - Auto Modes 52
TABLE 44. NHBNW Mode Choice Model - Transit Modes 53
TABLE 45. NHBNW Mode Choice Model - Nonmotorized Modes 53
TABLE 46. HBcoll Mode Choice Model - Auto Modes. 55
TABLE 47. HBcoll Mode Choice Model - Transit Modes 55
TABLE 48. HBcoll Mode Choice Model - Nonmotorized Modes 56
TABLE 49. HBsch Mode Choice Model 56
TABLE 50. Hourly peaking factors: HBW and HBO 58
TABLE 51. Hourly peaking factors: HBS and HBR 59

TABLE 52. Hourly peaking factors: College and School
 TABLE 53. Hourly peaking factors: Non-Home, Externals, and Trucks

List of Figures

FIGURE 1. Bicycle User Residential Preference Area .. 25
FIGURE 2. District Interaction Variables Used in Destination Choice... 36

2020 Kate v1.0 Trip-Based Demand Model

This document summarizes the technical specifications for the travel demand model used in the central Lane County area. It includes descriptions of the model structure, model application, the variables employed in model equations and their coefficients.

The model, which uses the person trip as the unit of analysis, was originally developed by Metro for use in the Portland-Vancouver metropolitan area and subsequently modified and transferred to the Lane Council of Governments (LCOG) to be applied in the region consisting of the Eugene-Springfield metropolitan area and Coburg.

The underlying model is regularly updated to incorporate new data and research findings. Since the last report in 2015, a number of model enhancements have been implemented. When compared to the previous trip-baed model used by LCOG, the Kate model offers the following methodological advances:

- All major model components have been re-estimated using data collected in the 2011 Oregon Household Activity Survey (OHAS), Portland/Vancouver and Eugene area samples.
- The auto and transit access network has been substantially revised. Centroid connector distances are a function of TAZ size, which both improves representation of vehicle-miles driven on local streets and results in median transit walk distances that are consistent with those observed in OHAS. Intra-zonal distances are also a function of zone size and connector lengths rather than the older "nearest neighbor" method.
- TAZ transit coverage factors have been eliminated, and walk access to transit has been added to all nonfreeway links. Where previous transit access + egress distances were limited by connector lengths (typically a total of 0.26 miles), walk access + egress is now capped at one mile, and a new transit mode choice variable discourages trips where out-of-vehicle time exceeds in-vehicle time.
- Walk distance (Wdist) is calculated using the transit access network, which includes pedestrian-only facilities.
- Destination choice logsums now include both travel time and travel cost variables, as well as alternativespecific constants for the available modes to each destination zone.

Features of former models that have been rendered unnecessary by these enhancements include:

- The share of trips by transit from a given TAZ was restricted by transit coverage factors
- Each transit boarding node required a centroid connector. Most transit trips boarded the nearest route, even if walking a few blocks to a more direct route would eliminate a transfer or result in less travel time.

An outline of the document structure is provided below. Most of the document describes the modeling of internal person trips. The flow chart shown in Appendix A gives a visual description of the logic contained in sections B through G.

- Section A describes the base input data used in all stages of model specification.
- Section B describes pre-generation-the development of household characteristics by TAZ.
- Section C describes the trip generation models for internal person trips by trip purpose.
- Section D describes the multimodal accessibility functions used in the mode choice model.
- Section E describes the destination choice model for internal person trips.
- Section F describes the mode choice model.
- Section G describes the time of day (peaking) factors.

A Input Data

The Kate model requires a variety of input data.

A. 1 Land Use and Access Measurement Data

A.1.a Socioeconomic and Land Use Data

The socioeconomic and land use data used in Metro's modeling process are listed below:

- H.I.A. - Sixty-four categories of households are formed when the following characteristics are cross-classified:
- Household size by four groups (1, 2, 3, 4+)
- Income class by four groups (< \$25K, \$25-\$50K, \$50-\$100K, > \$100K), 2010 dollars
- Age of household head by four groups (25<, 25-54,55-64, >65)
- Employment categories
- Agriculture, Mining, and Forestry
- Arts, Entertainment, and Recreation
- Construction
- Education
- Food Services and Drinking Places
- Government
- Health and Social Services
- Manufacturing (except high-tech)
- Manufacturing - High Tech
- Other Services
- Professional and Business Services
- Retail and Consumer Services
- Transportation, Warehousing, and Utilities
- Wholesale Trade
- Number of local intersections

A.1.b Accessibility Measure Calculation

The following base accessibility variables are computed for use in the model:

- Number of employees within 30 minutes of transit travel time (includes walk and wait time)
- Households within $1 / 2$ mile of each zone
- Retail employment within $1 / 2$ mile of each zone
- Total employment within $1 / 2$ mile of each zone
- Number of local intersections within $1 / 2$ mile of each zone

Composite accessibility measures (commonly referred to as "mix" variables) are then developed to account for both the relative magnitudes of and the interactions between three urban design variables known to affect travel behavior. This has an added benefit of eliminating the collinearity problem associated with using these variables individually:

- Household density
- Employment density
- Intersection density (a measure of street connectivity)

Two accessibility variables are computed: one uses retail employment density (MixRet) and the other uses total employment density (MixTot). The household and employment values are normalized to intersection units using geometric means. The natural log is used to transform the variables' units for compatibility with other variables in the auto ownership, multimodal accessibility, and mode choice models. Here is the equation form:

```
Mix = Ln ((int*(emp*(int.mean / emp.mean)) * (hh*(int.mean / hh.mean))) /
    (int + (emp*(int.mean / emp.mean)) + (hh*(int.mean / hh.mean))))
```

where:
$-\quad$ int $=$ Number of local intersections within $1 / 2$ mile of each zone

- emp = Retail OR Total employment within $1 / 2$ mile of each zone
- $\quad \mathrm{hh}=$ Households within $1 / 2$ mile of each zone
- int.mean = Mean int value across all zones
- emp.mean = Mean emp value across all zones
- hh.mean $=$ Mean hh value across all zones

A. 2 Travel Time Data

Travel time is an important variable in the destination choice and mode choice models.

Door-to-door travel time is used for the model estimation, and zone-to-zone travel time is used for the calibration. Travel time data in this section refer to zone-to-zone travel time.

For all modes but bike and walk, two sets of weekday travel time matrices are developed:

- Peak: A.M. 2-hour peak (07:00-08:59)
- Off-Peak: Mid-day 1-hour (12:00-12:59)

Household survey data are used to estimate the percentage of peak vs. off-peak travel for each trip purpose (except school). These factors determine which proportion of trips experience peak vs. off-peak travel times in the multimodal accessibility functions and mode choice models:

TABLE 1. Peak Factors Applied to Skims in Mode Choice Models

Trip Purpose		Peak Skims	Off-Peak Skims
HBW	Home-Based Work	0.5482	0.4518
HBshop	Home-Based Shopping	0.3017	0.6983
HBrec	Home-Based Recreation	0.3796	0.6204
HBoth	Home-Based Other	0.3985	0.6015
NHBW	Non-Home-Based Work	0.4452	0.5548
NHBNW	Non-Home-Based Non-Work	0.3731	0.6269
HBcoll	Home-Based College	0.4892	0.5108

A.2.a Auto Skims

Auto skims are saved from assignments run within the Emme software package using its proprietary SOLA algorithm. These equilibrium assignments use volume-delay functions in calculating congested times based on link length, capacity, and free-flow speed. Autos and freight trucks are assigned simultaneously, with trucks represented as passenger car equivalents (PCEs) to account for the additional road space that they consume as well as being subjected to parameters in the path choice algorithm that cause them to prioritize higher order facilities

A.2.b Transit Skims

Transit assignments follow the auto assignments, with transit speed determined as a function of the underlying auto speed except where transit vehicles operate on exclusive right-of-way. The transit pathfinding algorithm considers auxiliary (walk) time, wait time (initial and transfer), boarding time, and in-vehicle time. Wait times at certain nodes and in-vehicle times on certain line segments are reduced by applying factors designed to account for perceptions of time that vary by stop and vehicle characteristics.

Wait times are calculated as 50% of line headway, with composite times considered where multiple lines are available. Timed transfer locations receive no special consideration. In order to maximize consistency with the mode choice model, walk times in the transit assignments are weighted by a factor of 2.42 , which is the time equivalent of the HBW mode choice coefficient on auxiliary time. Similarly, boarding time is calculated as the time equivalent of the HBW mode choice coefficient on the number of transfers, with the resulting value of 3.86 minutes applied universally.

The transit assignment algorithm is multi-path and allocates trips among eligible paths by (1) distributing flow between multiple outgoing centroid connectors using an embedded logit model based on total transit time to the destination; and (2) distributing flow between multiple lines at a stop node by considering frequency and total transit time to destination.

The peak and off-peak transit skims saved from these assignments account for differences in levels of transit service and network congestion. The following matrices are developed for each time period:

- In-vehicle time by transit sub-mode (bus, BRT)
- Walk time (access + transfer + egress)
- First wait time
- Transfer wait time
- Number of transfer boardings

Initial wait time and total accumulated transfer wait time each have a maximum value of 30 minutes, meaning that any higher value in these skim matrices will be set to 30 minutes. In addition, transit is considered to be unavailable for trips between zone pairs where more than one mile total walking distance is required.

A. 3 Trip Cost Data

Travel cost is an input to the mode choice model. All cost values are in 2010 dollars.

A.3.a Auto Operating Cost

Auto operating cost varies by mode:

- \quad Drive Alone $=(\$ 0.1774 /$ mile*distance $)+(1 / 2$ of parking charge in attraction zone $)$
- \quad Shared Ride Driver $=[(\$ 0.1774 /$ mile* distance $)+(1 / 2$ of parking charge in attraction zone $)]$ * . 667
- Shared Ride Passenger = [(\$0.1774 / mile*distance) + (1/2 of parking charge in attraction zone)] * . 333
- Park and Ride = \$0.1774 / mile*distance (between production zone and lot)

A.3.b Parking Charges

The parking charge used as an input to auto cost varies by trip purpose:

- Home-based work (HBW) and home-based college (HBcoll) use long-term parking charge.
- Other trip purposes use short-term parking charge ($1 / 2$ of long-term parking charge).

A.3.c Transit Fare

Transit fares used in the model are calculated as averages weighted by LTD cash and non-cash fares, and vary by attraction zone based on the number of employees in each TAZ that have a group pass. In addition, the transit fares assumed for home-based college (HBcoll) trips account for the fact that University of Oregon and Lane Community College students receive transit passes that enable them to travel throughout the transit system for free.

A. 4 Transportation Service Inputs

Various transportation service inputs are applied at different stages in the model:

- Transit routes with average frequencies for the AM peak, PM peak, and midday off-peak periods
- Park-and-ride lot locations and capacities
- Zone-to-zone generalized costs from dedicated bicycle network

B Pre-Generation

Several models must be run before starting the travel demand process. This stage is called pre-generation and includes the worker model, the auto ownership model, and the children model.

These models were estimated using a multinomial logit procedure. The listed utilities are converted into probabilities to determine the number of workers, cars, and children in each TAZ. The following example probability is used for zero-worker households:

$$
\text { Prob }_{0 \text {-worker }}^{\text {HH }}=\mathrm{U}_{0 \text {-workerHH }} I\left(\mathrm{U}_{0 \text {-workerHH }}+\mathrm{U}_{1 \text {-workerHH }}+\mathrm{U}_{2 \text {-workerHH }}+\mathrm{U}_{3 \text {-workerHH }}\right)
$$

The parameters used in the pre-generation models are unchanged from the Portland Metro implementation.

B. $1 \quad$ Worker Model

The worker model estimates the number of households with $0,1,2$, and 3 or more workers.

B.1.a Variable Definitions

HHsize	$=1$ person, 2 person, 3 person, $4+$ person
Workercl	$=0$ worker, 1 worker, 2 worker, $3+$ worker
Income1	$=1$ if 2010 household income $<\$ 25,000$
Income2	$=1$ if 2010 household income $>=\$ 25,000$ and $<\$ 50,000$
Income3	$=1$ if 2010 household income $>=\$ 50,000$ and $<\$ 100,000$
Income4	$=1$ if 2010 household income $>=\$ 100,000$
Agecat1	$=1$ if age of household head $18-24$
Agecat2	$=1$ if age of household head $25-54$
Agecat3	$=1$ if age of household head $55-64$
Agecat4	$=1$ if age of household head $>=65$

B.1.b Calibrated Choice Utilities

Constants may differ from the original estimation due to the calibration process. These coefficients are the same as in the calibration code.

0 worker households

```
U = exp ( 7.9 - 2.1436*HHsize + 6.1394*Income1 + 3.0767*Income2 + 0.9966*Income3 - 6.4436*Agecat1 -
3.7234*Agecat2 - 3.4183*Agecat3 )
```


1 worker households

$\mathrm{U}=\exp \left(6.99-1.8731^{*}\right.$ HHsize $+3.7194^{*}$ Income1 $+2.2650^{*}$ Income2 $+0.7563^{*}$ Income3 -2.9635^{*} Agecat1 0.4402 *Agecat2 $-1.3386 *$ Agecat3)

2 worker households

```
U = exp ( 5.315 - 1.2747*HHsize + 1.2257*Income1 + 0.7633*Income2 + 0.2345*Income3 - 0.7721*Agecat1 +
0.6739*Agecat2 - 0.4320*Agecat3 )
```


3+ worker households

$U=\exp (0)$

B.1.c Estimated Variable Coefficients

TABLE 2. Worker Model

Variable	0 worker		1 worker		2 worker	
	Coefficient	Z-Statistic	Coefficient	Z-Statistic	Coefficient	Z-Statistic
Calib Constant	7.9		6.99		5.315	
Constant	8.1802	43.3	7.2623	40.1	5.3724	29.6
HHsize	-2.1436	-50.8	-1.8731	-48.1	-1.2747	-34.1
Income1	6.1394	30.4	3.7194	19.1	1.2257	6.2
Income2	3.0767	28.8	2.2650	24.3	0.7633	8.3
Income3	0.9966	12.9	0.7563	13.3	0.2345	4.4
Agecat1	-6.4436	-32.1	-2.9365	-16.1	-0.7721	-4.1
Agecat2	-3.7234	-27.7	-0.4402	-3.4	0.6739	5.1
Agecat3	-3.4183	-24.3	-1.3386	-9.7	-0.4320	-3.1

The worker model was estimated from 2012_5yr PUMS for the 4-county Portland Metro region. The 3+ worker choice utility is held constant at zero. Income4 and Agecat4 are the reference categories for Income and Agecat.

B. 2 Auto Ownership Model

Auto ownership is an important input to the mode choice models.

The model estimation dataset includes all (OHAS) surveyed households that reported income and whose locations could be geocoded.

B.2.a Variable Definitions

Hhsize1	$=1$ person
Hhsize2	$=2$ person
Hhsize3	$=3$ person
Hhsize4	$=4+$ person
Worker0	$=0$ worker
Worker1	$=1$ worker
Worker2	$=2$ worker
Worker3	$=3+$ worker
Income	$=1$ if 2010 household income $<\$ 25,000$
	$=2$ if 2010 household income $>=\$ 25,000$ and $<\$ 50,000$
	$=3$ if 2010 household income $>=\$ 50,000$ and $<\$ 100,500$
	$=4$ if 2010 household income $>=\$ 100,000$
SFPC	$=$ Percentage of TAZ dwellings that are single-family detached units
logMIXTHM	$=$ LN (Total employment accessibility within $1 / 2$ mile +1) (see Section A.1.b)
Tot30Tk	$=$ (Total employment within 30 minutes by mid-day transit) $/ 1000$

B.2.b Calibrated Choice Utilities

0 car households

```
U = exp (-3.0278 + 4.9228*h1w0 + 3.8632*h1w1 + 1.6074*h2w0 + 0.9721*h2w1 + 0.7961*h2w2 +
2.6325*h3w0 + 0.75*h3w1 + 0.4637*h3w2 + h4w0 + 0.5*h4w1 + 0.25*h4w2 - 1.6745*income - 2.0721*sfpc +
0.0169*Tot30Tk + 0.4233*logMIXTHM )
```


1 car households

$$
\begin{aligned}
& \mathrm{U}=\exp \left(-1.4954+6.3568^{*} \mathrm{~h} 1 \mathrm{w} 0+5.9245^{*} \mathrm{~h} 1 \mathrm{w} 1+4.0594 * \mathrm{~h} 2 \mathrm{w} 0+3.4905^{*} \mathrm{~h} 2 \mathrm{w} 1+2.9585 * \mathrm{~h} 2 \mathrm{w} 2+\right. \\
& 3.4712^{* h} 3 \mathrm{w} 0+3.5113 * \mathrm{~h} 3 \mathrm{w} 1+2.6011^{* h} 3 \mathrm{w} 2+2.6011 * \mathrm{~h} 3 \mathrm{w} 3+2.8079 * \mathrm{~h} 4 \mathrm{w} 0+3.2346 * \mathrm{~h} 4 \mathrm{w} 1+2.8861 * \mathrm{~h} 4 \mathrm{w} 2 \\
& \left.-0.8833^{*} \text { income }-1.5633^{*} \mathrm{sfpc}+0.0102 * \operatorname{Tot} 30 \mathrm{Tk}+0.2223 * \log \text { MIXTHM }\right)
\end{aligned}
$$

2 car households

$U=\exp \left(-1.8268+2.7548^{*} h 1 w 0+2.3944 * h 1 w 1+2.5439 * h 2 w 0+2.0346 * h 2 w 1+1.8537 * h 2 w 2+\right.$ 2.0169*h3w0 + 1.7867*h3w1 + 1.5335*h3w2 + 0.7326*h3w3 + 1.2802*h4w0 + 2.2461*h4w1 + 2.0506*h4w2 $-0.1749 *$ income $+0.0038^{* T o t 30 T k}+0.1544 * \log$ MIXTHM)

3+ car households

$$
U=\exp (0)
$$

B.2.c Estimated Variable Coefficients

TABLE 3. Auto Ownership Model

Variable	$\mathbf{0}$ car		$\mathbf{1}$ car		$\mathbf{2}$ car	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	-3.0278		-1.4954		-1.8268	
Constant	-1.3028	-1.63	-1.4954	-1.82	-1.8268	-3.87
HHsize1:Wkr0	4.9228	9.00	6.3568	8.36	2.7548	6.95
HHsize1:Wkr1	3.8632	7.17	5.9245	7.96	2.3944	6.94
HHsize2:WkrO	1.6074	2.85	4.0594	5.58	2.5439	8.65
HHsize2:Wkr1	0.9721	1.75	3.4905	4.82	2.0346	7.25
HHsize2:Wkr2	0.7961	1.28	2.9585	4.08	1.8537	6.80
HHsize3:Wkr0	2.6325	3.58	3.4712	4.35	2.0169	4.84
HHsize3:Wkr1	0.7500	fixed	3.5113	4.49	1.7867	5.28
HHsize3:Wkr2	0.4637	0.96	2.6011	3.48	1.5335	5.38
HHsize3:Wkr3	--	na	2.6011	3.48	0.7326	1.93
HHsize4:WkrO	1.0000	fixed	2.8079	3.30	1.2802	2.16
HHsize4:Wkr1	0.5000	fixed	3.2346	4.34	2.2461	7.33
HHsize4:Wkr2	0.2500	fixed	2.8861	3.90	2.0506	7.39
Income	-1.6745	-12.72	-0.8833	-10.36	-0.1749	-2.50
SFPC	-2.0721	-5.23	-1.5633	-6.06		--
Tot30Tk	0.0169	7.24	0.0102	5.52	0.0038	2.39
logMIXTHM	0.4233	5.13	0.2223	5.34	0.1544	4.64

The 3+ car choice utility is held constant at zero. HHSize4:Wkr3 is the reference category for Size x Wkr.

While the Worker and Children models use only HIA demographic inuts, Auto Ownership is influenced by changes in land use and transit service.

B. 3 Children Model

The school trip purpose requires the calculation of the number of households with $0,1,2$, or $3+$ children.

B.3.a Variable Definitions

HHsize = 1 person, 2 person, 3 person, $4+$ person
Age4 $=1$ if age of household head 18-24
$=2$ if age of household head 25-54
= 3 if age of household head 55-64
$=4$ if age of household head >=65

B.3.b Calibrated Choice Utilities

This model was not changed in calibration.

0 child households

$U=\exp \left(-4.069012^{*} H H s i z e+6.922379 * A g e 4\right)$

1 child households

$U=\exp (-2.425297 * H H s i z e+4.598579$ *Age4)

2 child households

$U=\exp \left(-0.6128247^{*} H\right.$ Hsize $+1.639239 *$ Age4)

3+ child households

$U=\exp (0)$

B.3.c Estimated Variable Coefficients

TABLE 4. Children Model

Variable	O child		1 child		2 child	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
HHsize	-4.069012	-24.3	-2.425297	-15.5	-0.6128247	-4.0
Agecat4	6.922379	22.8	4.598579	15.5	1.639239	5.5

The $3+$ child choice utility is held constant at zero.

C Trip Generation

Average weekday person trips are generated for eight trip purposes:

- HBW - Home-Based Work
- HBshop - Home-Based Shopping
- HBrec - Home-Based Recreation
- HBoth - Home-Based Other (excludes school and college)
- NHBW - Non-Home-Based Work
- NHBNW - Non-Home-Based Non-Work
- HBcoll - Home-Based College
- HBsch - Home-Based School

For each zone, the number of households in each demographic category is multiplied by a production rate. The number of trips is then factored up to match regional control totals by applying a calibration factor which varies by purpose. The demographic categories, production rates, and calibration factors are described by purpose in the following subsections.

Most home-based trips are generated by production zone in the two steps described above, then they are attached to an attraction zone within the destination choice models. Non-home-based trips add an extra step within generation: the allocation of trip productions to zones according to the non-home TAZs where they actually occur. NHBW trip productions are allocated to workplace TAZ's, while NHBNW trip productons are allocated to place of trip origin. Finally, school and college generation models incorporate trip attraction, whereas the other purposes address attraction through the destination choice models.

The parameters used in the generation models are unchanged from the Portland Metro implementation.

C. 1 HBW (Home-Based Work)

C.1.a Productions

HBW trips are produced solely by the number of workers in a household:

- Input Variable: Number of workers
- Output: Person trips (all modes), by zone of production (home)

TABLE 5. HBW Production Rates

Workers	Rate
$\mathbf{1}$	1.386047
$\mathbf{2}$	2.462282
$\mathbf{3 +}$	3.578358

C.1.b Attractions

HBW trip attractions are estimated by the following procedure:

- A regional average trip rate per employee is generated by dividing the sum of HBW productions by total employees.
- Trip attractions are generated by multiplying the average trip rate by the total employment in each TAZ.

C.1.c Scaling

Final HBW trips are generated by the following procedure:

- Total employment (multiplied by a calibration factor of 1.36) is divided by total productions to produce a production factor.
- Final HBW trips are calculated by multiplying the number of productions in each TAZ by the production factor.

C. 2 HBshop (Home-Based Shopping)

HBshop productions are generated by a cross-classification model:

- Input Variables: Household size, Number of workers
- Output: Person trips (all modes), by zone of production (home)

TABLE 6. HBshop Production Rates

	Workers			
HHsize	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 +}$
$\mathbf{1}$	0.5889655	0.3597194		
$\mathbf{2}$	1.02852	0.7578216	0.6313181	
$\mathbf{3}$	1.371429	1.121711	0.9657534	0.8703704
$\mathbf{4 +}$	1.847826	1.260241	0.9130435	1.14375

The resulting trips are multiplied by a calibration factor of 1.025 .

C. 3 HBrec (Home-Based Recreation)

HBrec productions are generated by a cross-classification model:

- Input Variable: Household size by worker status
- Output: Person trips (all modes), by zone of production (home)

TABLE 7. HBrec Production Rates

HHsize	all household members work	some household members do not work
$\mathbf{1}$	0.1783567	0.2772414
$\mathbf{2}$	0.4122894	0.5582865
$\mathbf{3}$	0.5462963	0.7933884
$\mathbf{4 +}$		1.43126

The resulting trips are multiplied by a calibration factor of 1.025 .

C. 4 HBoth (Home-Based Other)

HBoth productions are generated by a cross-classification model:

- Input Variable: Household size by worker status
- Output: Person trips (all modes), by zone of production (home)

TABLE 8. HBoth Production Rates

HHsize	all household members work	some household members do not work
$\mathbf{1}$	0.6723447	1.187586
$\mathbf{2}$	1.421209	2.076545
$\mathbf{3}$	1.916667	2.613932
$\mathbf{4 +}$		4.027823

The resulting trips are multiplied by a calibration factor of 1.025.

C. 5 NHBW (Non-Home-Based Work)

Production of non-home-based trips in trip-based models takes place in two steps. First, household trip generation rates are used to determine how many trips are produced regionally. Then, those productions are spatially allocated to where they actually originate. A set of TAZ allocation weights were estimated using transposed destination choice (i.e., "origin choice") models with TAZ size variables only.

C.5.a Production Totals

Total NHBW productions are initially generated solely by number of workers in the household:

- Input Variable: Number of workers
- Output: Person trips (all modes), regional control totals

TABLE 9. NHBW Household Production Rates

Workers	Rate
$\mathbf{0}$	0.107864
$\mathbf{1}$	0.835659
$\mathbf{2}$	1.723404
$\mathbf{3 +}$	2.33209

The resulting trips are multiplied by a calibration factor of 1.025.

C.5.b Production Spatial Allocation

NHBW Productions are allocated to TAZs using the following production allocation weights shown in Table 10. Total regional productions are scaled to control totals obtained from household productions above. See Section E.1.b for a description of employment sectors used here and in the Destination Choice models.

TABLE 10. NHBW Production Allocation Weights

TAZ Variable	Coefficient	T-Statistic
Agrfrm	1.0000	fixed
Areart	0.3906	2.78
Constr	4.2207	5.69
Educat	2.7456	6.17
FoodSv	1.0000	fixed
Govmnt	4.0960	8.45
Health	1.5311	2.20
MHitec	1.7315	2.58
Mfacrt	1.7315	2.58
Othser	2.7732	3.07
Probns	2.0138	3.84
Retcns	1.0000	fixed
Tranwu	1.9232	2.08
Wholes	1.7315	2.58
households	0.4462	-4.49

C. 6 NHBNW (Non-Home-Based Non-Work)

C.6.a Pre-Production

NHBNW productions are initially estimated by a cross-classification model:

- Input Variables: Household size by worker status
- Output: Person trips (all modes), regional control totals

TABLE 10. NHBNW Production Rates

HHsize	all household members work	some household members do not work
$\mathbf{1}$	0.511022	1.165517
$\mathbf{2}$	0.9187314	1.651685
$\mathbf{3}$	1.425926	1.956316
$\mathbf{4 +}$		3.161211

The resulting trips are multiplied by a calibration factor of 1.025.

C.6.b Production Spatial Allocation

NHBNW Productions are allocated to TAZs using the following production allocation weights shown in Table 12. Total regional productions are scaled to control totals obtained from household productions above. See Section E.1.b for a description of employment sectors used here and in the Destination Choice models.

TABLE 12. NHBNW Production Allocation Weights

TAZ Variable	Coefficient	T-Statistic
Agrfrm	0.0898	-2.88
Areart	0.3694	-4.21
Constr	0.0016	-2.70
Educat	0.1845	-15.56
FoodSv	0.2753	-7.54
Govmnt	0.1653	-12.26
Health	0.0926	-14.28
MHitec	0.0016	-2.70
Mfacrt	0.0016	-2.70
Othser	1.0000	fixed
Probns	0.0498	-12.01
Retcns	0.4971	-7.96
Tranwu	0.0424	-5.05
Wholes	0.0016	-2.70

C. 7 HBcoll (Home-Based College)

C.7.a Productions

HBcoll productions are generated by a cross-classification model:

- Input Variables: Household size, Age group (age of household head)
- Output: Person trips (all modes), by zone of production (home)

TABLE 11. HBcoll Production Rates

	Age Group			
Hhsize			$\mathbf{2 5 - 5 4}$	$\mathbf{5 5 - 6 4}$
$\mathbf{1}$	0.5384615	0.0473684	0.0059761	0.007837
$\mathbf{2}$	0.375	0.1138107	0.0289079	0.0183357
$\mathbf{3}$	0.6666667	0.1226576	0.1610487	0.1413043
$\mathbf{4 +}$	0.8333333	0.1359852	0.468254	0.2758621

The resulting trips are multiplied by a calibration factor of 1.5

Note that HBColl productions apply to households only, since group quarters (e.g., dormitories, fraternities) were not surveyed.

C. 8 HBsch (Home-Based School)

HBsch productions are generated by a cross-classification model using the combined Portland-Vancouver-SalemEugene samples of the 2011 OHAS. HBSchool person-trips include both students and adult escorts for the home-to-school and school-to-home trip.

- Input Variables: Household size, Number of children
- Output: Person trips (all modes), by zone of production (home)

TABLE 12. HBsch Production Rates

	Children			
HHsize	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 +}$
$\mathbf{1}$	--	--	--	--
$\mathbf{2}$	--	1.978448	--	--
$\mathbf{3}$	--	1.84793	3.326389	--
$\mathbf{4 +}$	--	2.248879	3.441193	5.103783

D Multimodal Accessibility Functions

Modal accessibility functions were estimated as an input to the destination choice and mode choice models. For each trip purpose, they measure the utility of choosing one of seven discrete modes.

Drive alone - only available to households with at least one car
Drive with passenger - only available to households with at least one car
Auto passenger
Transit by walk access - only available if total walk distance (access + transfer + egress) does not exceed one mile Transit by park-and-ride access - only available if attraction zone has parking cost; only available for home-based non-school trips; utilities and lot usage for formal park-and-ride lots and informal park-and-ride locations are calculated by a nested park-and-ride lot choice model
Bike - utilities and distances are produced by a stand-alone tool based on a dedicated bicycle network
Walk - only available for trips with a distance less than five miles

The logsum of all modal utilities is a key input to the destination choice model (Section E). It is generated as follows for each trip purpose (and for some purposes, by income group):

Ln ($\left.U_{\text {Drive Alone }}+U_{\text {Drive with Passenger }}+U_{\text {Auto Passenger }}+U_{\text {Walk to Transit }}+U_{\text {Park\&Ride }}+U_{\text {Bike }}+U_{\text {Walk }}\right)$

The parameters used in the multimodal accessibility functions are unchanged from the Portland Metro implementation with the exception of the alternative-specific constants, which were re-estimated.

D. 1 Variables Used in Multimodal Accessibility Functions

D.1.a Variable Definitions
IvTime $\quad=$ In-vehicle travel time (minutes, varies by mode)
WalkTime = Walk time (minutes), by mode:
Drive Alone: vehicle egress at trip end (5 min in CBD, 2 min elsewhere)
Shared Ride: Drive Alone walk time plus 5 minutes
Transit Modes: access to first stop plus egress from last stop at 3 mph
Walk: zone-to-zone time via key walk-accessible links at 3 mph (for trips <5 miles)
TranWait1 = Transit initial wait time (minutes)
TranWait2 = Transit transfer wait time (minutes)
TranModc = Transit mode constant (varies by transit path)
TranStypc = Transit stop type constant (varies by transit path)
TranXfrs = Transit \# of transfers
TrOVIV $=$ ratio of total out-of-vehicle time to in-vehicle time
Formal $=1$ if considering formal park-and-ride lots
Informal = 1 if considering informal park-and-ride locations
Shadow = Park-and-ride lot shadow cost (calculated by lot choice model)
BikeDist = Bicycle trip distance (miles)
Cbutil = Bicycle commute route attractiveness
Nbutil = Bicycle non-commute route attractiveness
BikeResPref = 1 if production zone in bicycle user residential preference area (see Figure 1)
Lowlnc $\quad=1$ if household income $<\$ 25 \mathrm{~K}$ (2010\$)
MidInc $=1$ if household income \$25-100K (2010\$)
Highlnc = 1 if household income \$100K+ (2010\$)
OpCost = Out-of-pocket cost, by mode:
Drive Alone: 100% of $\$ 0.1774$ / mile (2010\$)
Drive with Passenger: 66.7% of $\$ 0.1774$ / mile (2010\$)
Auto Passenger: 33.3\% of $\$ 0.1774$ / mile (2010\$)
Walk-access Transit: transit fare (2010\$)
Park-and-ride: $\$ 0.1774$ / mile for auto leg, transit fare for transit leg
PkgCost = Parking cost, by mode:

Drive Alone: 100% of long-term parking charge in attraction zone Drive with Passenger: 66.7% of long-term parking charge in attraction zone
Auto Passenger: 33.3% of long-term parking charge in attraction zone

FIGURE 1. Bicycle User Residential Preference Area

D. 2 HBW (Home-Based Work)

D.2.a Peak / Off-Peak Weights

HBW: 54.82\% peak skims, 45.18\% off-peak skims

D.2.b Calibrated Choice Utilities

Drive Alone

U $=\exp \left(-0.0414^{*}\right.$ IvTime -0.1^{*} WalkTime $-0.309 *$ LowInc*OpCost -0.252^{*} MidInc*OpCost 0.252 *HighInc*OpCost $-0.509 *$ LowInc*PkgCost $-0.509 *$ MidInc*PkgCost $-0.461 *$ Highlnc*PkgCost)

Drive with Passenger

$\mathrm{U}=\exp \left(-3.57-0.0414 *\right.$ IvTime $-0.1 *$ WalkTime $-0.309 *$ LowInc*OpCost -0.252^{*} MidInc*OpCost -
$0.252 *$ HighInc*OpCost $-0.509 *$ LowInc*PkgCost $-0.509 *$ MidInc*PkgCost $-0.461 *$ HighInc*PkgCost)

U $=\exp \left(-3.55-0.0414 *\right.$ IvTime $-0.1 *$ WalkTime $-0.309 *$ LowInc*OpCost -0.252^{*} MidInc*OpCost -
$0.252 *$ HighInc*OpCost $-0.509 *$ LowInc*PkgCost $-0.509 *$ MidInc*PkgCost $-0.461 *$ HighInc*PkgCost)

Transit by Walk Access

$\mathrm{U}=\exp \left(-1.07+\right.$ TranModc + TranStypc $-0.0414 *$ IvTime -0.0543^{*} TranWait1 - 0.061*TranWait2 - 0.1*WalkTime $-0.16^{*} \operatorname{TranXfrs}-0.4^{*} \operatorname{TrIVOV}-0.309 *$ LowInc*OpCost -0.252^{*} MidInc*OpCost -0.252^{*} HighInc*OpCost)

Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.

```
\(\mathrm{U}=\exp \left(1.85+0.75^{*} \ln \left(\exp \left(\right.\right.\right.\) Formal \({ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow \mathrm{~N}}\left[\exp \left(\left(\mathrm{U}_{\text {AutoLeg }}+\mathrm{U}_{\text {Transitleg }}+\right.\right.\right.\right.\) Shadow) \(\left.\left.\left.\left./\left(0.5^{*} 0.75\right)\right)\right]\right)\right)+\)
\(\exp \left(\operatorname{Informal}{ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-4.5+U_{\text {Autoleg }}+U_{\text {Transitleg }}+S h a d o w\right) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)\) )
```

where

$$
U_{\text {AutoLeg }}=-0.0414 * 2 * \text { IvTime }-0.309 * \text { LowInc*OpCost }-0.252 * \text { MidInc*OpCost }-0.252 * \text { HighInc*OpCost }
$$

and
$U_{\text {Transitleg }}=-0.0414^{*}$ IvTime -0.0543^{*} TranWait1 -0.061^{*} TranWait2 -0.1^{*} WalkTime -0.16^{*} TranXfrs 0.309*LowInc*OpCost $-0.252 *$ MidInc*OpCost -0.252 *HighInc*OpCost
and
$N=$ number of formal park-and-ride lots or informal par-and-ride locations under consideration

Bike

$U=\exp (0.294-0.469 *$ BikeDist $+0.0274 *$ Cbutil $+0.762 *$ BikeResPref)

Walk

$U=\exp (-0.315-0.1 *$ WalkTime $)$

D.2.c Estimated Variable Coefficients

TABLE 13. HBW Multimodal Accessibility Functions - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant			-3.57		-3.55	
IvTime	-0.0414	fixed	-0.0414	fixed	-0.0414	fixed
WalkTime	-0.1	fixed	-0.1	fixed	-0.1	fixed
LowIncOpCost	-0.309	fixed	-0.309	fixed	-0.309	fixed
MidIncOpCost	-0.252	fixed	-0.252	fixed	-0.252	fixed
HighIncOpCost	-0.252	fixed	-0.252	fixed	-0.252	fixed
LowIncPkgCost	-0.509	fixed	-0.509	fixed	-0.509	fixed
MidIncPkgCost	-0.509	fixed	-0.509	fixed	-0.509	fixed
HighIncPkgCost	-0.461	fixed	-0.461	fixed	-0.461	fixed

TABLE 14. HBW Multimodal Accessibility Functions - Transit Modes

Variable	Walk Access		Park and Ride	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	-1.07	-8.19	1.85	fixed
Ivtime	-0.0414	fixed	-0.0414	fixed
Wait1	-0.0543	fixed	-0.0543	fixed
Wait2	-0.061	fixed	-0.061	fixed
WalkTime	-0.1	fixed	-0.1	fixed
Transfers	-0.16	fixed	-0.16	fixed
TrIVOV	-0.4	fixed		
LowIncOpCost	-0.309	fixed	-0.309	fixed
MidIncOpCost	-0.252	fixed	-0.252	fixed
HighIncOpCost	-0.252	fixed	-0.252	fixed
Nested Park \& Ride Lot Choice Model				
Informal Constant				-5.0
Park \& Ride Nest				
Informal Nest Nest				0.75

TABLE 15. HBW Multimodal Accessibility Functions - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	0.294	3.95	-0.315	-2.66
BikeDist	-0.469	fixed		
Cbutil	0.0274	fixed		
BikeResPref	0.762	fixed		
WalkTime			-0.1	fixed

D. 3 HBshop, HBrec, HBoth (Other Home-Based)

D.3.a Peak / Off-Peak Weights

HBshop: 30.17\% peak skims, 69.83\% off-peak skims
HBrec: 37.96% peak skims, 62.04% off-peak skims
HBoth: 39.85\% peak skims, 60.15% off-peak skims

D.3.b Calibrated Choice Utilities

Drive Alone

U $=\exp \left(-0.0315^{*}\right.$ IvTime -0.125^{*} WalkTime -0.255^{*} LowInc*OpCost -0.255^{*} MidInc*OpCost -
$0.174 *$ HighInc*OpCost $-0.731 *$ Lowlnc*PkgCost $-0.393 *$ MidInc*PkgCost $-0.393 *$ HighInc*PkgCost)

Drive with Passenger

```
U = exp (-1.4*Shop - 1.12*Rec - 1.11*Oth -0.0315*IvTime - 0.125*WalkTime - 0.255*LowInc*OpCost -
0.255*MidInc*OpCost - 0.174*HighInc*OpCost - 0.731*LowInc*PkgCost - 0.393*MidInc*PkgCost -
0.393*HighInc*PkgCost )
```


Auto Passenger

```
U = exp (-1.83*Shop - 1.48*Rec - 1.58*Oth -0.0315*IvTime - 0.125*WalkTime - 0.255*LowInc*OpCost -
0.255*MidInc*OpCost - 0.174*HighInc*OpCost - 0.731*LowInc*PkgCost - 0.393*MidInc*PkgCost -
0.393*Highlnc*PkgCost)
```


Transit by Walk Access

```
U = exp (-0.0991*Shop - 0.634*Rec - 0.693*Oth + TranModc + TranStypc - 0.0315*IvTime - 0.05*TranWait1 -
0.05*TranWait2 - 0.125*WalkTime - 0.16*TranXfrs - 1*TrIVOV - 0.255*LowInc*OpCost - 0.255*MidInc*OpCost -
0.174*HighInc*OpCost )
```


Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.
$U=\exp \left(-3.1 *\right.$ Shop -2^{*} Rec $-2.2 *$ Oth $+0.75^{*} \ln \left(\exp \left(\right.\right.$ Formal ${ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(U_{\text {AutoLeg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.$ Shadow $) /$ $\left.\left.\left.\left.\left(0.5^{*} 0.75\right)\right)\right]\right)\right)+\exp \left(\operatorname{Informa}{ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-4+U_{\text {Autoleg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.\right.$ Shadow $\left.\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)\right)$
where

$$
U_{\text {AutoLeg }}=-0.0315^{*} 2 * \text { IvTime }-0.255 * \text { LowInc } * \text { OpCost }-0.255 * \text { MidInc*OpCost }-0.174 * \text { HighInc } * \text { OpCost }
$$

and

$$
U_{\text {Transitleg }}=-0.0315^{*} \text { IvTime }-0.05 * \text { TranWait1 }-0.05 * \text { TranWait2 }-0.125 * \text { WalkTime }-0.16 * \text { TranXfrs - }
$$

$$
0.255 * \text { LowInc*OpCost }-0.255^{*} \text { MidInc*OpCost }-0.174 * \text { HighInc*OpCost }
$$

and

$$
N=\text { number of formal park-and-ride lots or informal par-and-ride locations under consideration }
$$

Bike

$U=\exp \left(1.53 *\right.$ Shop $+1.11 * \operatorname{Rec}+1.32 *$ Oth $-0.223 *$ BikeDist $+0.126^{*}$ Nbutil $+0.929 *$ BikeResPref $)$

Walk

$U=\exp \left(-0.392 *\right.$ Shop $+0.306 *$ Rec -0.471^{*} Oth -0.125^{*} WalkTime)

D.3.c Estimated Variable Coefficients

TABLE 16. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Shop Constant			-1.4		-1.83	
Rec Constant			-1.12		-1.48	
Oth Constant			-1.11		-1.58	
IvTime	-0.0315	fixed	-0.0315	fixed	-0.0315	fixed
WalkTime	-0.125	fixed	-0.125	fixed	-0.125	fixed
LowIncOpCost	-0.255	fixed	-0.255	fixed	-0.255	fixed
MidIncOpCost	-0.255	fixed	-0.255	fixed	-0.255	fixed
HighIncOpCost	-0.174	fixed	-0.174	fixed	-0.174	fixed
LowIncPkgCost	-0.731	fixed	-0.731	fixed	-0.731	fixed
MidIncPkgCost	-0.393	fixed	-0.393	fixed	-0.393	fixed
HighIncPkgCost	-0.393	fixed	-0.393	fixed	-0.393	fixed

TABLE 17. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Transit Modes

Variable	Walk Access		Park and Ride				
	Coefficient	T-Statistic	Coefficient	T-Statistic			
Shop Constant	-0.0991	-0.53	-3.1	fixed			
Rec Constant	-0.634	-2.34	-2	fixed			
Oth Constant	-0.693	-4.98	-2.2	fixed			
IvTime	-0.0315	fixed	-0.0315	fixed			
TranWait1	-0.05	fixed	-0.05	fixed			
TranWait2	-0.05	fixed	-0.05	fixed			
WalkTime	-0.125	fixed	-0.125	fixed			
TranXfrs	-0.16	fixed	-0.16	fixed			
TrIVOV	-1	fixed					
LowIncOpCost	-0.255	fixed	-0.255	fixed			
MidIncOpCost	-0.255	fixed	-0.255	fixed			
HighIncOpCost	-0.174	fixed	-0.174	fixed			
Nested Park \& Ride Lot Choice Model							
Informal Constant							
Fark \&ide Nest							
Informal Nest Nest							

TABLE 18. HBshop, HBrec, HBoth Multimodal Accessibility Functions - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Shop Constant	1.53	7.53	-0.392	-3.46
Rec Constant	1.11	3.71	0.306	2.38
Oth Constant	1.32	9.20	-0.471	-5.98
BikeDist	-0.223	fixed		
Nbutil	0.126	fixed		
BikeResPref	0.929	fixed		
WalkTime			-0.125	fixed

D. 4 NHBW (Non-Home-Based Work)

D.4.a Peak / Off-Peak Weights

NHBW: 44.52\% peak skims, 55.48\% off-peak skims

D.4.b Calibrated Choice Utilities

Drive Alone

$U=\exp \left(-0.0452^{*}\right.$ IvTime -0.157^{*} WalkTime $-0.194 *$ OpCost -0.557^{*} PkgCost $)$

Drive with Passenger

```
U = exp (-2.58-0.0452*IvTime - 0.157*WalkTime - 0.194*OpCost - 0.557*PkgCost )
```


Auto Passenger

$U=\exp \left(-2.77-0.0452^{*}\right.$ IvTime $-0.157 *$ WalkTime $-0.194 *$ OpCost $-0.557 *$ PkgCost $)$

Transit by Walk Access

```
U = еxp ( 0.458 + TranModc + TranStypc - 0.0452*IvTime - 0.118*TranWait1 - 0.118*TranWait2 -
0.157*WalkTime - 0.16*TranXfrs - 0.194*OpCost - 1*TrOVIV )
```


Bike

$U=\exp (-0.91-0.22 *$ BikeDist $+0.0829 *$ Nbutil $+1.11 *$ BikeResPref)

Walk

$U=\exp (-0.0611-0.157 *$ WalkTime)

D.4.c Estimated Variable Coefficients

TABLE 19. NHBW Multimodal Accessibility Functions - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant			-2.58		-2.77	
IvTime	-0.0452	fixed	-0.0452	fixed	-0.0452	fixed
WalkTime	-0.157	fixed	-0.157	fixed	-0.157	fixed
OpCost	-0.194	fixed	-0.194	fixed	-0.194	fixed
PkgCost	-0.557	fixed	-0.557	fixed	-0.557	fixed

TABLE 20. NHBW Multimodal Accessibility Functions - Transit Modes

Variable	Walk Access	
	Coefficient	T-Statistic
Constant	0.458	2.65
IvTime	-0.0452	fixed
TranWait1	-0.118	fixed
TranWait2	-0.118	fixed
WalkTime	-0.157	fixed
TranXfrs	-0.16	fixed
OpCost	-0.194	fixed
TrIVOV	-1	fixed

TABLE 21. NHBW Multimodal Accessibility Functions - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	-0.91	-4.96	-0.0611	-0.63
BikeDist	-0.22	fixed		
Nbutil	0.0829	fixed		
BikeResPref	1.11	fixed		
WalkTime			-0.157	fixed

D. 5 NHBNW (Non-Home-Based Non-Work)

D.5.a Peak / Off-Peak Weights

NHBNW: 37.31\% peak skims, 62.69\% off-peak skims

D.5.b Calibrated Choice Utilities

Drive Alone

$U=\exp \left(-0.0278^{*}\right.$ IvTime -0.125^{*} WalkTime -0.15^{*} OpCost -0.335^{*} PkgCost)

Drive with Passenger

$U=\exp (-0.433-0.0278 *$ IvTime $-0.125 *$ WalkTime $-0.15 *$ OpCost $-0.335 *$ PkgCost $)$

Auto Passenger

$U=\exp \left(-1.36-0.0278 *\right.$ IvTime -0.125^{*} WalkTime -0.15^{*} OpCost -0.335^{*} PkgCost)

Transit by Walk Access

$\mathrm{U}=\exp (-3.49+$ TranModc + TranStypc $-0.0278 *$ IvTime - 0.0781*TranWait1 - 0.0841*TranWait2 0.125*WalkTime - 0.16*TranXfrs - 1*TrIVOV - 0.15*OpCost)

Bike
$U=\exp \left(-1.87-0.251^{*}\right.$ BikeDist $+0.0829 *$ Nbutil $+0.879 *$ BikeResPref $)$

Walk
$U=\exp \left(-0.631-0.125^{*}\right.$ WalkTime $)$

D.5.c Estimated Variable Coefficients

TABLE 22. NHBNW Multimodal Accessibility Functions - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant			-0.433		-1.36	
IvTime	-0.0278	fixed	-0.0278	fixed	-0.0278	fixed
WalkTime	-0.125	fixed	-0.125	fixed	-0.125	fixed
OpCost	-0.15	fixed	-0.15	fixed	-0.15	fixed
PkgCost	-0.335	fixed	-0.335	fixed	-0.335	fixed

TABLE 23. NHBNW Multimodal Accessibility Functions - Transit Modes

Variable	Walk Access	
	Coefficient	T-Statistic
Constant	-3.49	-33.48
IvTime	-0.0278	fixed
TranWait1	-0.0781	fixed
TranWait2	-0.0841	fixed
WalkTime	-0.125	fixed
TranXfrs	-0.16	fixed
TrIVOV	-1	fixed
OpCost	-0.15	fixed

TABLE 24. NHBNW Multimodal Accessibility Functions - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	-1.87	-5.99	-0.631	-6.93
BikeDist	-0.251	fixed		
Nbutil	0.0829	fixed		
BikeResPref	0.879	fixed		
WalkTime			-0.125	fixed

D. 6 HBcoll (Home-Based College)

D.6.a Peak / Off-Peak Weights

HBcoll: 48.92\% peak skims, 51.08\% off-peak skims

D.6.b Calibrated Choice Utilities

Drive Alone

U $=\exp \left(-0.0346 *\right.$ IvTime $-0.08 *$ WalkTime $-0.463 *$ LowInc*OpCost -0.383^{*} MidInc*OpCost 0.184*HighInc*OpCost $-0.463 *$ LowInc*PkgCost $-0.383 *$ MidInc*PkgCost $-0.184 *$ HighInc*PkgCost)

Drive with Passenger

U $=\exp (-3.9-0.0346 *$ IvTime $-0.08 *$ WalkTime $-0.463 *$ LowInc*OpCost $-0.383 *$ MidInc*OpCost -
$0.184 *$ HighInc*OpCost $-0.463 *$ LowInc*PkgCost $-0.383 *$ MidInc*PkgCost $-0.184 *$ HighInc*PkgCost)

Auto Passenger

```
U = exp (-2.55-0.0346*IvTime - 0.08*WalkTime - 0.463*LowInc*OpCost - 0.383*MidInc*OpCost -
0.184*HighInc*OpCost - 0.463*LowInc*PkgCost - 0.383*MidInc*PkgCost - 0.184*HighInc*PkgCost )
```


Transit by Walk Access

$\mathrm{U}=\exp \left(-1.06+\right.$ TranModc + TranStypc $-0.0346 *$ IvTime -0.055^{*} TranWait1 - 0.055*TranWait2 - 0.08*WalkTime -0.15*TranXfrs - 0.463*LowInc*OpCost - 0.383*MidInc*OpCost - 0.184*HighInc*OpCost)

Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.

```
\(U=\exp \left(2.85+0.75^{*} \ln \left(\exp \left(\right.\right.\right.\) Formal \({ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(U_{\text {AutoLeg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.\) Shadow \(\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)+\)
\(\exp \left(\right.\) Informal* \(0.5 * \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-5.5+U_{\text {Autoleg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.\) Shadow) \(\left.\left.\left.\left./\left(0.5^{*} 0.75\right)\right)\right]\right)\right)\) )
```

where

$$
U_{\text {AutoLeg }}=-0.0346 * 2 * \text { IvTime }-0.463 * \text { LowInc*OpCost }-0.383 * \text { MidInc*OpCost }-0.184^{*} \text { HighInc*OpCost }
$$

and
$U_{\text {Transitleg }}=-0.0346^{*}$ IvTime -0.055^{*} TranWait1 -0.055^{*} TranWait2 -0.08^{*} WalkTime -0.15^{*} TranXfrs 0.463*LowInc*OpCost -0.383^{*} MidInc*OpCost $-0.184 *$ HighInc*OpCost
and

$$
N=\text { number of formal park-and-ride lots or informal par-and-ride locations under consideration }
$$

Bike

$U=\exp \left(0.625-0.3^{*}\right.$ BikeDist $+0.108^{*}$ Cbutil)

Walk

$$
U=\exp (-0.235-0.08 * \text { WalkTime })
$$

D.6.c Estimated Variable Coefficients

TABLE 25. HBcoll Multimodal Accessibility Functions - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant			-3.9		-2.55	
IvTime	-0.0346	fixed	-0.0346	fixed	-0.0346	fixed
WalkTime	-0.08	fixed	-0.08	fixed	-0.08	fixed
LowIncOpCost	-0.463	fixed	-0.463	fixed	-0.463	fixed
MidIncOpCost	-0.383	fixed	-0.383	fixed	-0.383	fixed
HighIncOpCost	-0.184	fixed	-0.184	fixed	-0.184	fixed
LowIncPkgCost	-0.463	fixed	-0.463	fixed	-0.463	fixed
MidIncPkgCost	-0.383	fixed	-0.383	fixed	-0.383	fixed
HighIncPkgCost	-0.184	fixed	-0.184	fixed	-0.184	fixed

TABLE 26. HBcoll Multimodal Accessibility Functions - Transit Modes

Variable	Walk Access		Park and Ride	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	-1.06	-5.08	2.85	fixed
IvTime	-0.0346	fixed	-0.0346	fixed
TranWait1	-0.055	fixed	-0.055	fixed
TranWait2	-0.055	fixed	-0.055	fixed
WalkTime	-0.08	fixed	-0.08	fixed
TranXfrs	-0.15	fixed	-0.15	fixed
LowIncOpCost	-0.463	fixed	-0.463	fixed
MidIncOpCost	-0.383	fixed	-0.383	fixed
HighIncOpCost	-0.184	fixed	-0.184	fixed
Nested Park \& Ride Lot Choice Model				
Informal Constant				
Fark \& Ride Nest				
Informal Nest				

TABLE 27. HBcoll Multimodal Accessibility Functions - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	0.625	0.13	-0.235	-0.73
BikeDist	-0.3	fixed		
Cbutil	0.108	fixed		
WalkTime			-0.08	fixed

E Destination Choice

The destination choice models were developed using a multinomial logit estimation procedure. Only HBW has separate models by income group. For other home-based trip purposes, income-specific LogSums are weighted.

The destination choide models were completely re-estimated for the LCOG implementation.

E. $1 \quad$ Variables Used in Destination Choice Models

E.1.a Accessibility Variable Definitions

The numbers in the district interaction variables represent travel associated with the districts displayed in Figure 2.

```
LogSum = Logsum of multimodal accessibility functions (all modes)
LogDist = Log of [distance (miles) + 1]
Eug2Spr = 1 if trip is produced in Eugene (1) and attracted to Springfield (2)
Spr2Eug = 1 if trip is produced in Springfield (2) and attracted to Eugene (1)
AllCob = 1 if trip has one end in Coburg (3) and the other end in Eugene (1) or Springfield (2)
IntraDist = 1 if trip does not cross a district boundary
```

FIGURE 2. District Interaction Variables Used in Destination Choice

E.1.b Zonal Size Variable Definitions

Zonal size variables are applied at the attraction zone.
TABLE 28. Zonal Size Variables Used in Destination Choice Models

Name	Employment Sectors	NAICS
AerEmp	Arts, Entertainment, and Recreation	71
AmfEmp	Agriculture, Mining \& Forestry	11,21
ConEmp	Construction	23
EduEmp	Education	61
FsdEmp	Food Services and Drinking Places	722
GovEmp	Government	All where owner = public, except 61 (edu)
HssEmp	Health and Social Services	62
MfgEmp	Manufacturing (except high tech)	$31-33$ (except 334)
MhtEmp	Manufacturing - High tech	334
OsvEmp	Other Services (except Public Administration)	81
PbsEmp	Professional and Business Services	$51-56$
RcsEmp	Retail and Consumer Services	$44,45,721$
TwuEmp	Transportation, Warehousing and Utilities	$22,48,49$
WtEmp	Wholesale Trade	42
Households	Households	
OutAcres	Outdoor Activity Acres	
ParkAcres	Park Acres	
CollEnr	College Enrollment	

E. 2 HBW (Home-Based Work)

E.2.a Calibrated Choice Utilities

HBW - Low Income Households

```
U = exp ( 0.2*LogSum - 1.615*LogDist*Eug2Spr - 1.353*LogDist*Spr2Eug - 1.59*LogDist*AllCob -
1.04*LogDist*IntraDist + 0.2417*AerEmp + 1*AmfEmp + 0.0164*ConEmp + 0.1054*EduEmp + 0.2417*FsdEmp +
0.0164*GovEmp + 0.1381*HssEmp + 0.0376*MfgEmp + 1*MhtEmp + 0.2417*OsvEmp + 0.0646*PbsEmp +
0.0693*RcsEmp + 0.0164*TwuEmp + 0.1466*WtEmp )
```


HBW - Middle Income Households

```
U = exp ( 0.2*LogSum - 1.277*LogDist*Eug2Spr - 2.102*LogDist*Spr2Eug - 1.25*LogDist*AllCob -
0.82*LogDist*IntraDist + 1*AerEmp + 0.12*AmfEmp + 0.208*ConEmp + 0.591*EduEmp + 0.3499*FsdEmp +
0.5605*GovEmp + 0.5769*HssEmp + 0.3042*MfgEmp + 1*MhtEmp + 1*OsvEmp + 0.2753*PbsEmp + 0.12*RcsEmp
+0.1979*TwuEmp + 0.2645*WtEmp )
```


HBW - High Income Households

U $=\exp \left(0.2^{*}\right.$ LogSum - 0.447*LogDist*Eug2Spr - 0.676*LogDist*Spr2Eug - 1.12*LogDist*AllCob 0.86*LogDist*IntraDist + 0.5735*AerEmp + 0.1097*AmfEmp + 0.5735*ConEmp + 0.5735*EduEmp + 0.1097*FsdEmp $+0.5735^{*}$ GovEmp $+0.5735^{*}$ HssEmp $+0.5735^{*}$ MfgEmp + 1 * MhtEmp +1 *OsvEmp + $0.5735 *$ PbsEmp $+0.1097 *$ RcsEmp $+0.5735 * T w u E m p+0.1097 * W t E m p ~)$

E.2.b Estimated Variable Coefficients

TABLE 29. HBW Destination Choice Model

Variable	Low Income <25K		Middle Income 25-100K		High Income 100K+	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
LogSum	0.2	fixed	0.2	fixed	0.2	fixed
Calib LogDist * Eug2Spr	-1.615		-1.277		-0.447	
LogDist * Eug2Spr	-0.665	-4.87	-0.477	-7.81	-0.497	-7.22
Calib LogDist * Spr2Eug	-1.353		-2.102		-0.676	
LogDist * Spr2Eug	-0.353	-2.18	-0.602	-5.93	-0.696	-5.29
LogDist * AllCob	-1.590	-2.43	-1.250	-3.29	-1.120	-2.61
Calib LogDist * IntraDist	-1.040		-0.820		-0.860	
LogDist * IntraDist	-1.340	-7.08	-1.120	-11.35	-1.160	-10.10
AerEmp	0.2417	-2.63	1	fixed	0.5735	-2.06
AmfEmp	1	fixed	0.1200	-4.84	0.1097	-4.61
ConEmp	0.0164	-3.08	0.2080	-2.92	0.5735	-2.06
EduEmp	0.1054	-4.33	0.5910	-2.57	0.5735	-2.06
FsdEmp	0.2417	-2.63	0.3499	-2.66	0.1097	-4.61
GovEmp	0.0164	-3.08	0.5605	-2.48	0.5735	-2.06
HssEmp	0.1381	-3.86	0.5769	-2.55	0.5735	-2.06
MfgEmp	0.0376	-3.63	0.3042	-3.95	0.5735	-2.06
MhtEmp	1	fixed		1	fixed	
OsvEmp	0.2417	-2.63		1	fixed	
PbsEmp	0.0646	-4.04	0.2753	-4.93	0.5735	fixed
RcsEmp	0.0693	-4.12	0.1200	-4.84	0.1097	-2.06
TwuEmp	0.0164	-3.08	0.1979	-2.94	0.5735	-2.06
WtEmp	0.1466	-2.69	0.2645	-2.59	0.1097	-4.61

E. 3 HBshop, HBrec, HBoth (Other Home-Based)

E.3.a LogSum Weights

TABLE 30. HBshop, HBrec, HBoth LogSum Weights

Income Group	HBShop LogSum Weight	HBRec LogSum Weight	HBoth LogSum Weight
Low Income < $\mathbf{2 5 K}$	0.208	0.191	0.242
Middle Income $\$ 25-100 \mathrm{~K}$	0.695	0.650	0.619
High Income $\$ 100 \mathrm{~K}+$	0.097	0.159	0.139

E.3.b Calibrated Choice Utilities

HBShop

```
U = exp ( 1.33*LogSum - 3.95*LogDist*Eug2Spr - 3.82*LogDist*Spr2Eug - 0.949*LogDist*AllCob -
1.99*LogDist*IntraDist + 0.0773*FsdEmp + 0.1588*OsvEmp + 1*RcsEmp )
```


HBRec

```
U = exp ( 0.547*LogSum - 1.693*LogDist*Eug2Spr - 1.699*LogDist*Spr2Eug - 0.906*LogDist*AllCob -
2.05*LogDist*IntraDist + 0.2322*AerEmp + 0.0074*EduEmp + 0.0529*FsdEmp + 0.045*GovEmp +
0.0012*Households + 0.2837*OutAcres + 1*ParkAcres/10 )
```


HBoth

```
U = exp ( 0.789*LogSum - 1.05*LogDist*Eug2Spr - 0.505*LogDist*Spr2Eug - 1.6*LogDist*AllCob -
```

1.56*LogDist*IntraDist + 1*AerEmp + 0.0129*AmfEmp $+0.0392^{*}$ ConEmp $+0.2753^{*}$ EduEmp + 1 * FsdEmp +
0.4892 GovEmp $+0.3746 *$ HssEmp $+0.0129 *$ MfgEmp $+0.0129 *$ MhtEmp $+1 *$ OsvEmp $+0.1212 *$ PbsEmp +
$0.357 *$ RcsEmp $+0.0392 *$ TwuEmp $+0.0392 *$ WtEmp $+0.1327 *$ Households)

E.3.c Estimated Variable Coefficients

TABLE 31. HBshop, HBrec, HBoth Destination Choice Models

Variable	HBshop		HBrec		HBoth	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
LogSum	1.33	fixed	0.547	fixed	0.789	fixed
Calib LogDist * Eug2Spr	-3.950		-1.693		-1.050	
LogDist * Eug2Spr	-1.450	-16.00	-0.893	-13.84	-1.350	-26.89
Calib LogDist * Spr2Eug	-3.820		-1.699		-0.505	
LogDist * Spr2Eug	-1.320	-12.55	-0.899	-8.60	-0.905	-17.17
LogDist * AllCob	-0.949	-3.03	-0.906	-2.55	-1.600	-8.31
Calib LogDist * IntraDist	-1.990		-2.050		-1.560	
LogDist * IntraDist	-2.290	-23.21	-2.050	-28.11	-1.860	-35.12
AerEmp			0.2322	-7.99	1	fixed
AmfEmp					0.0129	-5.10
ConEmp					0.0392	-4.84
EduEmp			0.0074	-14.96	0.2753	-10.90
FsdEmp	0.0773	-6.46	0.0529	-16.77	1	fixed
GovEmp			0.0450	-16.42	0.4892	-5.81
HssEmp					0.3746	-8.61
MfgEmp					0.0129	-5.10
MhtEmp					0.0129	-5.10
OsvEmp	0.1588	-8.23			1	fixed
PbsEmp					0.1212	-8.92
RcsEmp	1	fixed			0.3570	-7.17
TwuEmp					0.0392	-4.84
WtEmp					0.0392	-4.84
Households			0.0012	-12.30	0.1327	-21.50
OutAcres			0.2837	-6.65		
ParkAcres / 10			1	fixed		

E. 4 NHBW \& NHBNW (Non-Home-Based)

E.4.a Calibrated Choice Utilities

NHBW

U $=\exp \left(0.57^{*}\right.$ LogSum - 1.87*LogDist*Eug2Spr - 1.74*LogDist*Spr2Eug - 1.75*LogDist*AllCob -
1.75*LogDist*IntraDist $+0.5684^{*}$ AerEmp $+0.0189 *$ AmfEmp $+0.0189 *$ ConEmp $+0.2254 *$ EduEmp + 1*FsdEmp * 0.2837^{*} GovEmp $+0.1275 *$ HssEmp $+0.0189 *$ MfgEmp $+0.0189 *$ MhtEmp $+0.0954^{*}$ OsvEmp $+0.1313 *$ PbsEmp + $0.5684 * R c s E m p+0.0954 *$ TwuEmp $+0.0189 *$ WtEmp $+0.1023 *$ Households)

NHBNW

```
U = exp (1.65*LogSum - 1.59*LogDist*Eug2Spr - 1.334*LogDist*Spr2Eug - 0.852*LogDist*AllCob -
1.38*LogDist*IntraDist + 0.3694*AerEmp + 0.0898*AmfEmp + 0.0016*ConEmp + 0.1845*EduEmp +
0.2753*FsdEmp + 0.1653*GovEmp + 0.0926*HssEmp + 0.0016*MfgEmp + 0.0016*MhtEmp + 1*OsvEmp +
0.0498*PbsEmp + 0.4971*RcsEmp + 0.0424*TwuEmp + 0.0016*WtEmp )
```


E.4.b Estimated Variable Coefficients

TABLE 32. Non-Home-Based Destination Choice Models

Variable	NHBW		NHBNW	
	Coefficient	T-Statistic	Coefficient	T-Statistic
LogSum	0.57	6.31	1.65	14.50
LogDist * Eug2Spr	-1.87	-24.73	-1.19	-21.90
LogDist * Spr2Eug	-1.74	-18.65	-0.934	-14.53
LogDist * AllCob	-1.75	-23.56	-0.852	-4.43
LogDist * IntraDist	-1.75	-23.56	-1.68	-31.85
AerEmp	0.5684	-3.47	0.3694	-4.21
AmfEmp	0.0189	-6.11	0.0898	-2.88
ConEmp	0.0189	-6.11	0.0016	-2.70
EduEmp	0.2254	-9.28	0.1845	-15.56
FsdEmp	1	fixed	0.2753	-7.54
GovEmp	0.2837	-6.66	0.1653	-12.26
HssEmp	0.1275	-9.61	0.0926	-14.28
MfgEmp	0.0189	-6.11	0.0016	-2.70
MhtEmp	0.0189	-6.11	0.0016	-2.70
OsvEmp	0.0954	-3.65		1
PbsEmp	0.1313	-8.37	0.0498	-12.01
RcsEmp	0.5684	-3.47	0.4971	-7.96
TwuEmp	0.0954	-3.65	0.0424	-5.05
WtEmp	0.0189	-6.11	0.0016	-2.70
Households	0.1023	-16.99		

E. 5 HBcoll (Home-Based College)

E.5.a LogSum Weights

TABLE 33. HBcoll LogSum Weights

Income Group	HBcoll LogSum Weight
Low Income $\mathbf{\$ 2 5 K}$	0.343
Middle Income \$25-100K	0.566
High Income \$100K+	0.091

E.5.b Calibrated Choice Utility

U $=\exp (0.2 *$ LogSum - 1.35*LogDist*Eug2Spr - 1.35*LogDist*Spr2Eug - 1.35*LogDist*AllCob 1.35*LogDist*IntraDist $+0.1119 *$ CollEnr)

E.5.c Estimated Variable Coefficients

Variable	HBcoll	
	Coefficient	T-Statistic
LogSum	0.2	fixed
LogDist * Eug2Spr	-1.35	fixed
LogDist * Spr2Eug	-1.35	fixed
LogDist * AllCob	-1.35	fixed
LogDist * IntraDist	-1.35	fixed
CollEnr	0.1119	-9.61

E. 6 HBsch (Home-Based School)

$U=\exp \left(\ln \left(A T T R_{j}\right)-0.6 * T_{i j}+0.012 * T_{i j}{ }^{2}\right)$

Where:

$$
\begin{aligned}
& \mathrm{i}=\text { from zone } \\
& \mathrm{j}=\text { to zone } \\
& \mathrm{T}=\text { mid-day auto travel time }
\end{aligned}
$$

F Mode Choice Model

Modal accessibility functions were estimated as an input to the destination choice and mode choice models. For each trip purpose, they measure the utility of choosing one of seven discrete modes.

Drive alone - only available to households with at least one car
Drive with passenger - only available to households with at least one car
Auto passenger
Transit by walk access - only available if total walk distance (access + transfer + egress) does not exceed one mile Transit by park-and-ride access - only available if attraction zone has parking cost; only available for home-based non-school trips; utilities and lot usage for formal park-and-ride lots and informal park-and-ride locations are calculated by a nested park-and-ride lot choice model
Bike - utilities and distances are produced by a stand-alone tool based on a dedicated bicycle network
Walk - only available for trips with a distance less than five miles

Probabilities are applied to distributed trips to determine the number of trips by each mode. An example probability of choosing the Drive Alone mode follows:

Prob $_{\text {Drive Alone }}=U_{\text {Drive Alone }} I\left(U_{\text {Drive Alone }}+U_{\text {Drive wlPass }}+U_{\text {Passenger }}+U_{\text {walk to Transit }}+U_{\text {Parkeride }}+U_{\text {Bike }}+U_{\text {Walk }}\right)$

The parameters used in the mode choice models are unchanged from the Portland Metro implementation with the exception of (1) those associated with the bicycle mode, which were re-estimated; and (2) the alternative-specific constants, which were adjusted during model calibration.

F. $1 \quad$ Variables Used in Mode Choice Models

F.1.a Variable Definitions

IvTime WalkTime	= In-vehicle travel time (minutes, varies by mode)
	= Walk time (minutes), by mode:
	Drive Alone: vehicle egress at trip end (5 min in CBD, 2 min elsewhere)
	Shared Ride: Drive Alone walk time plus 5 minutes
	Transit Modes: access to first stop plus egress from last stop at 3 mph
	Walk: zone-to-zone time via key walk-accessible links at 3 mph (for trips < 5 miles)
TranWait1	= Transit initial wait time (minutes)
TranWait2	= Transit transfer wait time (minutes)
TranModc	= Transit mode constant (varies by transit path)
TranStypc	= Transit stop type constant (varies by transit path)
TranXfrs	= Transit \# of transfers
TrOVIV	= ratio of total out-of-vehicle time to in-vehicle time
Formal	= 1 if considering formal park-and-ride lots
Informal	= 1 if considering informal park-and-ride locations
Shadow	= Park-and-ride lot shadow cost (calculated by lot choice model)
BikeDist	= Bicycle trip distance (miles)
Cbutil	= Bicycle commute route attractiveness
Nbutil	= Bicycle non-commute route attractiveness
BikeResPref	= 1 if production zone in bicycle user residential preference area (see Figure 1)
Lowlnc	= 1 if household income < $\mathbf{2 5 K}$ (2010\$)
MidInc	= 1 if household income \$25-100K (2010\$)
Highlnc	= 1 if household income \$100K+ (2010\$)
OpCost	= Out-of-pocket cost, by mode:
	Drive Alone: 100% of \$0.1774 / mile (2010\$)
	Drive with Passenger: 66.7% of \$0.1774 / mile (2010\$)
	Auto Passenger: 33.3\% of \$0.1774 / mile (2010\$)
	Walk-access Transit: transit fare (2010\$)
	Park-and-ride: \$0.1774 / mile for auto leg, transit fare for transit leg
PkgCost	= Parking cost, by mode:
	Drive Alone: 100\% of long-term parking charge in attraction zone
	Drive with Passenger: 66.7\% of long-term parking charge in attraction zone
	Auto Passenger: 33.3\% of long-term parking charge in attraction zone
MixRetP	$=$ Retail employment access within $1 / 2$ mile of production zone (see Section A.1.b)
MixTotA	$=$ Total employment access within $1 / 2$ mile of attraction zone (see Section A.1.b)
Cvalo	$=1$ if no cars in household
Cval1	$=1$ if fewer cars than workers in household (cars >0)
HH1	= 1 if 1 person household
HH2	$=1$ if 2 person household
HH34	= 1 if $3+$ person household
Work1	= 1 if one (and only one) worker in household

F. 2 HBW (Home-Based Work)

F.2.a Calibrated Choice Utilities

Drive Alone

```
U = exp ( -0.0414*IvTime - 0.1*WalkTime - 0.309*LowInc*OpCost - 0.252*MidInc*OpCost -
0.252*HighInc*OpCost - 0.509*LowInc*PkgCost - 0.509*MidInc*PkgCost - 0.461*HighInc*PkgCost - 1.9*Cval1 )
```


Drive with Passenger

```
U = exp (-3.32-0.0414*IvTime - 0.1*WalkTime - 0.309*LowInc*OpCost - 0.252*MidInc*OpCost -
0.252*HighInc*OpCost - 0.509*LowInc*PkgCost - 0.509*MidInc*PkgCost - 0.461*HighInc*PkgCost - 1.02*Cval1 -
1.4*HH1 + 0.729*HH34 )
```


Auto Passenger

```
U = exp (-3.56-0.0414*IvTime - 0.1*WalkTime - 0.309*LowInc*OpCost - 0.252*MidInc*OpCost -
0.252*HighInc*OpCost - 0.509*LowInc*PkgCost - 0.509*MidInc*PkgCost - 0.461*HighInc*PkgCost + 0.299*HH2 +
0.0297*In(MixRetP) + 0.0506*In(MixTotA) )
```


Transit by Walk Access

```
U = exp ( -2.34 + TranModc + TranStypc - 0.0414*IvTime - 0.0543*TranWait1 - 0.061*TranWait2 - 0.1*WalkTime
-0.16*TranXfrs - 0.4*TrIVOV - 0.309*LowInc*OpCost - 0.252*MidInc*OpCost - 0.252*HighInc*OpCost +
0.08*In(MixTotA) + 1.34*Cval0 + 0.349*Cval1 + 0.784*Work1 )
```


Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.
$\mathrm{U}=\exp \left(1.85+0.75 * \ln \left(\exp \left(\right.\right.\right.$ Formal ${ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(U_{\text {Autoleg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.$ Shadow -1.498^{*} Cval1) $\left.\left./\left(0.5^{*} 0.75\right)\right)\right]$
)) $+\exp \left(\operatorname{Informal}{ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-4.5+U_{\text {AutoLeg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.\right.$ Shadow $-1.498^{*} C$ val1 $\left.\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)\right)$
where
$U_{\text {AutoLeg }}=-0.0414^{*} 2^{*}$ IvTime $-0.309 *$ LowInc*OpCost $-0.252 *$ MidInc*OpCost -0.252^{*} HighInc*OpCost
and
$U_{\text {Transitleg }}=-0.0414^{*}$ IvTime -0.0543^{*} TranWait1 -0.061^{*} TranWait2 $-0.1 *$ WalkTime -0.16^{*} TranXfrs $0.309 *$ LowInc*OpCost $-0.252 *$ MidInc*OpCost -0.252 *HighInc*OpCost
and
N = number of formal park-and-ride lots or informal par-and-ride locations under consideration

Bike

$U=\exp \left(0.12-0.469 * B i k e D i s t+0.0274^{*}\right.$ Cbutil $+0.762^{*}$ BikeResPref $+0.0517^{*} \operatorname{In}($ MixTotA))

Walk

$U=\exp (-0.88-0.1 *$ WalkTime $+0.107 * \ln ($ MixRetP) $)$

F.2.b Estimated Variable Coefficients

TABLE 34. HBW Mode Choice Model - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant			-3.32		-3.56	
Constant			-3.72	-31.72	-4.41	-19.18
IvTime	-0.0414	-4.74	-0.0414	-4.74	-0.0414	-4.74
Calib WalkTime	-0.1		-0.1		-0.1	
WalkTime	-0.0791	-14.01	-0.0791	-14.01	-0.0791	-14.01
LowIncOpCost	-0.309	-2.83	-0.309	-2.83	-0.309	-2.83
MidIncOpCost	-0.252	-6.34	-0.252	-6.34	-0.252	-6.34
HighIncOpCost	-0.252	-6.34	-0.252	-6.34	-0.252	-6.34
LowIncPkgCost	-0.509	-13.53	-0.509	-13.53	-0.509	-13.53
MidIncPkgCost	-0.509	-13.53	-0.509	-13.53	-0.509	-13.53
HighIncPkgCost	-0.461	-11.65	-0.461	-11.65	-0.461	-11.65
Ln(MixRetP)					0.0297	1.46
Ln(MixTotA)					0.0506	2.37
Cval1	-1.9	-18.06	-1.02	-5.07		
HH1		-1.4	-3.3			
HH2					0.299	2.69
HH34			0.729	5.45		

TABLE 35. HBW Mode Choice Model - Transit Modes

Variable	Walk Access		Park and Ride	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	-2.34		1.85	
Constant	-2.34	-13.25	-6.504	-7.3
Ivtime	-0.0414	-4.74	-0.0414	-4.74
Wait1	-0.0543	-3.69	-0.0543	-3.69
Wait2	-0.061	-4.66	-0.061	-4.66
Calib WalkTime	-0.1			
WalkTime	-0.0791	-14.01	-0.0791	-14.01
Transfers	-0.16	fixed	-0.16	fixed
Calib TrIVOV	-0.4			
TrIVOV	-0.0519	-2.65		
LowIncOpCost	-0.309	-2.83	-0.309	-2.83
MidIncOpCost	-0.252	-6.34	-0.252	-6.34
HighIncOpCost	-0.252	-6.34	-0.252	-6.34
Ln(MixTotA)	0.08	fixed		
Work1	0.784	5.58		
Cval0	1.34	6.22		
Cval1	0.349	2.07	-1.498	-3.3
Nested Park \& Ride Lot Choice Model				
Informal Constant				
Park \& Ride Nest				
Formal Nest	Informal Nest	-4.5		

TABLE 36. HBW Mode Choice Model - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	0.12		-0.88	
Constant	-2.51	-7.35	-1.82	-4.74
BikeDist	-0.469	-9.56		
Cbutil	0.0274	10.79		
BikeResPref	0.764	4.68		
Calib WalkTime			-0.1	
WalkTime			-0.0791	-14.01
Ln(MixTotA)	0.0517	fixed		
Ln(MixRetP)			0.107	2.54

F. 3 HBshop, HBrec, HBoth (Other Home-Based)

F.3.a Calibrated Choice Utilities

Drive Alone

U $=\exp \left(-0.0315^{*}\right.$ IvTime -0.125^{*} WalkTime -0.255^{*} LowInc*OpCost -0.255^{*} MidInc*OpCost -
0.174*HighInc*OpCost - 0.731*LowInc*PkgCost -0.393^{*} MidInc*PkgCost -0.393^{*} Highlnc*PkgCost $-0.704 *$ Cval1)

Drive with Passenger

$\mathrm{U}=\exp \left(-1.25^{*}\right.$ Shop -1.17^{*} Rec -1.01^{*} Oth -0.0315^{*} IvTime -0.125^{*} WalkTime -0.255^{*} LowInc*OpCost 0.255*MidInc*OpCost - 0.174*HighInc*OpCost -0.731 *LowInc*PkgCost $-0.393 *$ MidInc*PkgCost 0.393*HighInc*PkgCost $-0.436 *$ Cval1 $-1.63 * H H 1+0.889 *$ HH34)

Auto Passenger

U $=\exp \left(-0.73^{*}\right.$ Shop -0.23^{*} Rec -0.38^{*} Oth -0.0315^{*} IvTime -0.125^{*} WalkTime -0.255^{*} LowInc*OpCost 0.255*MidInc*OpCost - 0.174*HighInc*OpCost $-0.731 *$ LowInc*PkgCost $-0.393 *$ MidInc*PkgCost 0.393*Highlnc*PkgCost $-1.41 * H H 1+0.256 * H H 34$)

Transit by Walk Access

U $=\exp \left(-2.47^{*}\right.$ Shop -3.93^{*} Rec -3.83^{*} Oth + TranModc + TranStypc - 0.0315*IvTime - 0.05*TranWait1 0.05*TranWait2 - 0.125*WalkTime - 0.16*TranXfrs - 1*TrIVOV - 0.255*LowInc*OpCost -0.255^{*} MidInc*OpCost $0.174 *$ Highlnc*OpCost $+0.213 * \ln ($ MixTotA $)+1.96 *$ Cval0 $+0.665 *$ Cval1)

Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.
$U=\exp \left(-3.1^{*}\right.$ Shop -2^{*} Rec -2.2^{*} Oth $+0.75^{*} \ln \left(\exp \left(\right.\right.$ Formal ${ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(U_{\text {AutoLeg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.$ Shadow $) /$ $\left.\left.\left.\left.\left(0.5^{*} 0.75\right)\right)\right]\right)\right)+\exp \left(\operatorname{Informa}{ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-4+U_{\text {Autoleg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.\right.$ Shadow $\left.\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)\right)$
where

$$
U_{\text {AutoLeg }}=-0.0315^{*} 2 * \text { IvTime }-0.255 * \text { LowInc } * \text { OpCost }-0.255 * \text { MidInc*OpCost }-0.174 * \text { HighInc } * \text { OpCost }
$$

and
$U_{\text {Transitleg }}=-0.0315^{*} \operatorname{IvTime}-0.05^{*}$ TranWait1 -0.05^{*} TranWait2 -0.125^{*} WalkTime $-0.16 *$ TranXfrs 0.255*LowInc*OpCost -0.255^{*} MidInc*OpCost -0.174^{*} HighInc*OpCost
and

$$
N=\text { number of formal park-and-ride lots or informal par-and-ride locations under consideration }
$$

Bike

$U=\exp \left(1.61^{*}\right.$ Shop $+3.1^{*} \operatorname{Rec}+1.59 *$ Oth -0.223^{*} BikeDist $+0.126^{*}$ Nbutil $+0.929 *$ BikeResPref + $0.212 * \ln ($ MixTotA))

Walk

$U=\exp \left(-0.74^{*}\right.$ Shop $+0.41^{*}$ Rec -0.13^{*} Oth -0.125^{*} WalkTime $+0.188^{*} \ln ($ MixRetP $\left.)\right)$

F.3.b Estimated Variable Coefficients

TABLE 37. HBshop, HBrec, HBoth Mode Choice Model - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Shop			-1.25		-0.73	
Calib Rec			-1.17		-0.23	
Calib Oth			-1.01		-0.38	
Shop			-1.56	-32.21	-1.89	-34.42
Rec			-1.17	-20.87	-1.4	-22.98
Oth			-0.983	-28.87	-1.5	-38.77
IvTime	-0.0315	-2.16	-0.0315	-2.16	-0.0315	-2.16
Calib WalkTime	-0.125		-0.125		-0.125	
WalkTime	-0.0906	-27.55	-0.0906	-27.55	-0.0906	-27.55
LowIncOpCost	-0.255	-7.47	-0.255	-7.47	-0.255	-7.47
MidIncOpCost	-0.255	-7.47	-0.255	-7.47	-0.255	-7.47
HighIncOpCost	-0.174	-3.99	-0.174	-3.99	-0.174	-3.99
LowIncPkgCost	-0.731	-3.1	-0.731	-3.1	-0.731	-3.1
MidIncPkgCost	-0.393	-5.2	-0.393	-5.2	-0.393	-5.2
HighIncPkgCost	-0.393	-5.2	-0.393	-5.2	-0.393	-5.2
Cval1	-0.704	-9.07	-0.436	-5.25		
HH1			-1.63	-16.37	-1.41	-14.85
HH34			0.889	22.77	0.256	5.75

TABLE 38. HBshop, HBrec, HBoth Mode Choice Model - Transit Modes

Variable	Walk Access		Park and Ride	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Shop	-2.47		-3.1	
Calib Rec	-3.93		-2	
Calib Oth	-3.83		-2.2	
Shop	-4.95	-9.89	-7.023	-3.8
Rec	-4.4	-8.63	-7.023	-3.8
Oth	-5.03	-10	-7.023	-3.8
IvTime	-0.0315	-2.16	-0.0315	-2.16
Calib TranWait1	-0.05		-0.05	
TranWait1	-0.0824	-4.7	-0.0824	-4.7
Calib TranWait2	-0.05		-0.05	
TranWait2	-0.074	-4.42	-0.074	-4.42
Calib WalkTime	-0.125		-0.125	
WalkTime	-0.0906	-27.55	-0.0906	-27.55
TranXfrs	-0.16	fixed	-0.16	fixed
Calib TrIVOV	-1			
TrIVOV	-0.121	-3.11		
LowIncOpCost	-0.255	-7.47	-0.255	-7.47
MidIncOpCost	-0.255	-7.47	-0.255	-7.47
HighIncOpCost	-0.174	-3.99	-0.174	-3.99
Ln(MixTotA)	0.212	6.18		
Ln(MixRetP)	0.203	5.2		
Cval0	1.96	12.4		
Cval1	0.665	3.93		
Nested Park \& Ride Lot Choice Model				
Informal Constant			-4	
Park \& Ride Nest			0.75	
Formal Nest			0.5	
Informal Nest			0.5	

TABLE 39. HBshop, HBrec, HBoth Mode Choice Model - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Shop	1.61		-0.74	
Calib Rec	3.1		0.41	
Calib Oth	1.59		-0.13	
Shop	-3.74	-11.64	-2.6	-15.29
Rec	-2.73	-8.63	-1.41	-8.44
Oth	-3.73	-12.05	-2.15	-13.83
BikeDist	-0.223	fixed		
Nbutil	0.126	7.05		
BikeResPref	0.929	5.45		
Calib WalkTime			-0.125	
WalkTime			-0.0906	-27.55
Ln(MixTotA)	0.212	fixed		
Calib Ln(MixRetP)			0.188	
Ln(MixRetP)			0.229	13.99

F. 4 NHBW (Non-Home-Based Work)

F.4.a Calibrated Choice Utilities

Drive Alone

$U=\exp (-0.0452 *$ IvTime $-0.157 *$ WalkTime $-0.194 *$ OpCost $-0.557 *$ PkgCost)

Drive with Passenger

$\mathrm{U}=\boldsymbol{\operatorname { e x p }}\left(-2.68-0.0452^{*}\right.$ IvTime -0.157^{*} WalkTime $-0.194 *$ OpCost -0.557^{*} PkgCost $)$

Auto Passenger

$U=\exp \left(-2.87-0.0452 * I v T i m e-0.157 *\right.$ WalkTime -0.194^{*} OpCost -0.557^{*} PkgCost)

Transit by Walk Access

$\mathrm{U}=\exp \left(0.03+\right.$ TranModc + TranStypc -0.0452^{*} IvTime -0.118^{*} TranWait1 - 0.118*TranWait2 - 0.157*WalkTime -0.16*TranXfrs - 0.194*OpCost - 1*TrOVIV)

Bike

$U=\exp (-1.18-0.22 *$ BikeDist $+0.0829 *$ Nbutil $+1.11 *$ BikeResPref $+0.1 * \operatorname{Ln}($ MixTotA $)$)

Walk

```
U = exp (-1.49-0.157*WalkTime + 0.248*In(MixRetP) )
```


F.4.b Estimated Variable Coefficients

TABLE 40. NHBW Mode Choice Model - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant			-2.68		-2.87	
Constant			-2.43	-46.75	-2.99	-48.6
IvTime	-0.0452	-2.49	-0.0452	-2.49	-0.0452	-2.49
WalkTime	-0.157	-16.7	-0.157	-16.7	-0.157	-16.7
OpCost	-0.194	-3.33	-0.194	-3.33	-0.194	-3.33
PkgCost	-0.557	-5.41	-0.557	-5.41	-0.557	-5.41

TABLE 41. NHBW Mode Choice Model - Transit Modes

Variable	Walk Access	
	Coefficient	T-Statistic
Calib Constant	0.03	
Constant	-1.76	-2.76
IvTime	-0.0452	-2.49
TranWait1	-0.118	-5.07
TranWait2	-0.118	-5.07
WalkTime	-0.157	-16.7
TranXfrs	-0.16	fixed
OpCost	-0.194	-3.33
Calib TrIVOV	-1	
TrIVOV	0	fixed
Calib Ln(MixTotA)	0	
Ln(MixTotA)	-0.161	-6.18

TABLE 42. NHBW Mode Choice Model - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	-1.18		-1.49	
Constant	-4.96	-52.56	-2.12	-5.52
BikeDist	-0.22	fixed		
Nbutil	0.0829	2.29		
BikeResPref	1.11	2.67		
WalkTime			-0.157	-16.7
Calib Ln(MixRetP)			0.248	
Ln(MixRetP)			0.2553	10.6
Ln(MixTotA)	0.1	fixed		

F. 5 NHBNW (Non-Home-Based Non-Work)

F.5.a Calibrated Choice Utilities

Drive Alone
$U=\exp \left(-0.0278^{*}\right.$ IvTime -0.125^{*} WalkTime -0.15^{*} OpCost -0.335^{*} PkgCost)

Drive with Passenger

$U=\exp \left(-1.73-0.0278^{*}\right.$ IvTime -0.125^{*} WalkTime -0.15^{*} OpCost -0.335^{*} PkgCost)

Auto Passenger

$U=\exp \left(-2.56-0.0278^{*}\right.$ IvTime -0.125^{*} WalkTime -0.15^{*} OpCost -0.335^{*} PkgCost)

Transit by Walk Access

$\mathrm{U}=\exp \left(0.16+\right.$ TranModc + TranStypc $-0.0278 *$ IvTime -0.0781^{*} TranWait1 -0.0841^{*} TranWait2 -
0.125^{*} WalkTime $-0.16 * \operatorname{TranXfrs}-1^{*} \operatorname{TrIVOV}-0.15 *$ OpCost $+0.128 * \ln ($ MixTotA $)+0.135 * \ln ($ MixRetP))

Bike
$U=\exp (-0.86-0.251 *$ BikeDist $+0.0829 *$ Nbutil $+0.879 *$ BikeResPref $+0.172 * \ln ($ MixTotA $)$)

Walk

$U=\exp \left(-2.26-0.125^{*}\right.$ WalkTime $+0.301^{*} \ln ($ MixRetP))

F.5.b Estimated Variable Coefficients

tABLE 43. NHBNW Mode Choice Model - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant			-1.73		-2.56	
Constant			-0.491	-18.74	-1.37	-41.17
IvTime	-0.0278	-1.63	-0.0278	-1.63	-0.0278	-1.63
Calib WalkTime	-0.125		-0.125		-0.125	
WalkTime	-0.0886	-14.68	-0.0886	-14.68	-0.0886	-14.68
OpCost	-0.15	-2.94	-0.15	-2.94	-0.15	-2.94
PkgCost	-0.335	-5.91	-0.335	-5.91	-0.335	-5.91

TABLE 44. NHBNW Mode Choice Model - Transit Modes

Variable	Walk Access	
	Coefficient	T-Statistic
Calib Constant	0.16	
Constant	-3.8	-4.82
IvTime	-0.0278	-1.63
TranWait1	-0.0781	-2.85
TranWait2	-0.0841	-2.97
Calib WalkTime	-0.125	
WalkTime	-0.0886	-14.68
TranXfrs	-0.16	fixed
Calib TrIVOV	-1	
TrIVOV	-0.15	fixed
OpCost	-0.15	-2.94

TABLE 45. NHBNW Mode Choice Model - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	-0.86		-2.25	
Constant	-4.26	-7.47	-3.73	-11.9
BikeDist	-0.251	-2.67		
Nbutil	0.0829	fixed		
BikeResPref	0.879	3.07		
Calib WalkTime			-0.125	
WalkTime			-0.0886	-14.68
Ln(MixRetP)			0.301	10.1
Ln(MixTotA)	0.172	fixed		

F. 6 HBcoll (Home-Based College)

F.6.a Calibrated Choice Utilities

Drive Alone

U $=\exp \left(-0.0346 *\right.$ IvTime $-0.08 *$ WalkTime $-0.463 *$ LowInc*OpCost -0.383^{*} MidInc*OpCost -
0.184*HighInc*OpCost - 0.463*LowInc*PkgCost - 0.383*MidInc*PkgCost - 0.184*HighInc*PkgCost - 1.36*Cval1)

Drive with Passenger

U $=\exp \left(-3.87-0.0346 *\right.$ IvTime -0.08^{*} WalkTime -0.463^{*} LowInc*OpCost -0.383^{*} MidInc*OpCost -
0.184*HighInc*OpCost - 0.463*LowInc*PkgCost $-0.383 *$ MidInc*PkgCost -0.184^{*} HighInc*PkgCost)

Auto Passenger

```
U = exp (-1.95-0.0346*IvTime - 0.08*WalkTime - 0.463*LowInc*OpCost - 0.383*MidInc*OpCost -
0.184*HighInc*OpCost - 0.463*LowInc*PkgCost - 0.383*MidInc*PkgCost - 0.184*HighInc*PkgCost )
```


Transit by Walk Access

$U=\exp \left(-0.76+\right.$ TranModc + TranStypc $-0.0346 *$ IvTime -0.055^{*} TranWait1 - 0.055*TranWait2 - 0.08*WalkTime $-0.15^{*} \operatorname{TranXfr}-0.463 *$ LowInc*OpCost -0.383^{*} MidInc*OpCost -0.184^{*} HighInc*OpCost $+0.763^{*}$ CvalO + 0.528^{*} Cval $1+0.1^{*} \ln ($ LogMixTotA $)$)

Park and Ride

Park and Ride uses older model specifications; only the mode-specific constant and informal constant were recalibrated in 2017. The coefficient on auto in-vehicle time is doubled in order to maintain a balance between auto and transit time that is comparable to the observed relationship; otherwise, too many trips include unreasonably high auto times as travelers choose to drive to the periphery of the CBD before boarding transit.
$U=\exp \left(2.85+0.75^{*} \ln \left(\exp \left(\right.\right.\right.$ Formal ${ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow \mathrm{~N}}\left[\exp \left(\left(U_{\text {AutoLeg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.$ Shadow $\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)+$ $\exp \left(\right.$ Informal ${ }^{*} 0.5^{*} \ln \left(\sum_{1 \rightarrow N}\left[\exp \left(\left(-5.5+U_{\text {Autoleg }}+U_{\text {Transitleg }}+\right.\right.\right.\right.$ Shadow $\left.\left.\left.\left.) /\left(0.5^{*} 0.75\right)\right)\right]\right)\right)$)
where

$$
U_{\text {AutoLeg }}=-0.0346 * 2 * \text { IvTime }-0.463 * \text { LowInc*OpCost }-0.383 * \text { MidInc*OpCost }-0.184 * \text { HighInc*OpCost }
$$

and

$$
U_{\text {Transitleg }}=-0.0346 * \text { IvTime }-0.055 * \text { TranWait1 }-0.055 * T \text { TranWait2 }-0.08 * \text { WalkTime }-0.15 * \text { TranXfrs }-
$$

$$
0.463 * \text { LowInc*OpCost }-0.383 * \text { MidInc*OpCost }-0.184 * \text { HighInc*OpCost }
$$

and
$N=$ number of formal park-and-ride lots or informal par-and-ride locations under consideration

Bike

$U=\exp \left(7.63-0.3^{*}\right.$ BikeDist $+0.108^{*}$ Cbutil $+0.1^{*} \operatorname{Ln}($ MixTotA) $)$

Walk

$U=\exp (-0.95-0.08 *$ WalkTime $+0.119 * \ln ($ MixRetP $))$

F.6.b Estimated Variable Coefficients

TABLE 46. HBcoll Mode Choice Model - Auto Modes

Variable	Drive Alone		Drive with Passenger		Auto Passenger	
	Coefficient	T-Statistic	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant			-3.87		-1.95	
Constant			-3.08	-12.85	-3.01	-16.8
IvTime	-0.0346	-1.48	-0.0346	-1.48	-0.0346	-1.48
Calib WalkTime	-0.08		-0.08		-0.08	
WalkTime	-0.0615	-4.25	-0.0615	-4.25	-0.0615	-4.25
LowIncOpCost	-0.463	-2.36	-0.463	-2.36	-0.463	-2.36
MidIncOpCost	-0.383	-3.58	-0.383	-3.58	-0.383	-3.58
HighIncOpCost	-0.184	-1.61	-0.184	-1.61	-0.184	-1.61
LowIncPkgCost	-0.463	-2.36	-0.463	-2.36	-0.463	-2.36
MidIncPkgCost	-0.383	-3.58	-0.383	-3.58	-0.383	-3.58
HighIncPkgCost	-0.184	-1.61	-0.184	-1.61	-0.184	-1.61
Cval1	-1.36	-3.5				

TABLE 47. HBcoll Mode Choice Model - Transit Modes

Variable	Walk Access		Park and Ride	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	-0.76		2.85	
Constant	-2.07	-1.99	-1.175	-3.4
IvTime	-0.0346	-1.48	-0.0346	-1.48
Calib TranWait1	-0.055		-0.055	
TranWait1	-0.0296	-1.15	-0.0296	-1.15
Calib TranWait2	-0.055		-0.055	
TranWait2	-0.0296	-1.15	-0.0296	-1.15
Calib WalkTime	-0.08		-0.08	
WalkTime	-0.0615	-4.25	-0.0615	-4.25
TranXfrs	-0.15	fixed	-0.15	fixed
LowIncOpCost	-0.463	-2.36	-0.463	-2.36
MidIncOpCost	-0.383	-3.58	-0.383	-3.58
HighIncOpCost	-0.184	-1.61	-0.184	-1.61
Cval0	0.763	1.28		
Cval1	0.528	1.35		
Nested Park \& Ride Lot Choice Model				
Informal Constant			-5.5	
Park \& Ride Nest			0.75	
Formal Nest			0.5	
Informal Nest			0.5	

TABLE 48. HBcoll Mode Choice Model - Nonmotorized Modes

Variable	Bike		Walk	
	Coefficient	T-Statistic	Coefficient	T-Statistic
Calib Constant	7.63		-0.95	
Constant	-3.73	-7.49	-1.83	-1.29
BikeDist	-0.3	fixed		
Cbutil	0.108	2.33		
Calib WalkTime			-0.08	
WalkTime			-0.0615	-4.25
Ln(MixRetP)			0.119	0.81
Ln(MixTotA)	0.1	fixed		

F. 7 HBsch (Home-Based School)

The HBsch model assumes fixed mode shares developed from OHAS data for all trips in the Eugene-SpringfieldCoburg model area. Walk trips longer than one mile and bike trips longer than four miles ($90^{\text {th }}$ percentile OHAS distances) are disallowed and apportioned among remaining modes.

TABLE 49. HBsch Mode Choice Model

Mode	HBsch Mode Share
Auto Driver	0.276
Auto Passenger	0.164
Transit	0.028
Walk	0.391
Bike	0.049
School Bus	0.092

G Time of Day Factors

Time of day travel is estimated separately for auto and transit, and the factors are direction-specific. Factors can be estimated for any hour by using start time data from the 2010-11 household activity survey. Hourly peaking factors for both Production->Attraction and Attraction->Production trip ends for all trip purposes are provided in the tables on the following pages.

TABLE 50. Hourly peaking factors: HBW and HBO

Time Period	HBW Auto PA	HBW Auto AP	HBW Transit PA	HBW Transit AP	$\begin{gathered} \text { HBO } \\ \text { Auto PA } \end{gathered}$	$\begin{gathered} \text { HBO } \\ \text { Auto AP } \end{gathered}$	HBO Transit PA	HBO Transit AP
0:00-0:59	-	0.0011	-	-	-	0.0015	-	-
1:00-1:59	0.0002	0.0007	-	0.0324	-	0.0005	-	-
2:00-2:59	-	0.0026	-	-	-	-	-	-
3:00-3:59	0.0043	0.0007	-	-	0.0002	-	-	-
4:00-4:59	0.0070	-	-	-	0.0025	-	-	-
5:00-5:59	0.0740	-	0.0200	-	0.0031	0.0005	-	-
6:00-6:59	0.0639	0.0005	0.0783	-	0.0122	0.0019	0.0033	-
7:00-7:59	0.1243	0.0046	0.2149	-	0.0309	0.0071	0.1423	-
8:00-8:59	0.0755	0.0036	0.0083	0.0462	0.0483	0.0140	0.0388	0.0244
9:00-9:59	0.0364	0.0129	0.0346	-	0.0364	0.0122	0.1199	0.0348
10:00-10:59	0.0221	0.0410	-	0.0052	0.0515	0.0286	0.0595	0.0039
11:00-11:59	0.0177	0.0110	0.0413	0.0031	0.0307	0.0388	0.0555	0.0167
12:00-12:59	0.0203	0.0181	0.0048	0.0366	0.0266	0.0294	0.0576	0.0858
13:00-13:59	0.0379	0.0308	-	0.0214	0.0317	0.0246	-	0.0167
14:00-14:59	0.0103	0.0239	0.0067	-	0.0510	0.0411	0.0529	0.0238
15:00-15:59	0.0051	0.0352	-	0.0316	0.0342	0.0370	0.0303	0.0284
16:00-16:59	0.0084	0.0759	0.0324	0.1855	0.0263	0.0507	0.0459	0.0632
17:00-17:59	0.0056	0.1125	-	0.1938	0.0382	0.0541	-	0.0251
18:00-18:59	0.0109	0.0340	-	-	0.0370	0.0592	-	0.0251
19:00-19:59	0.0010	0.0163	-	-	0.0180	0.0195	-	-
20:00-20:59	0.0002	0.0144	-	0.0026	0.0071	0.0281	-	0.0459
21:00-21:59	0.0009	0.0121	-	-	0.0078	0.0289	-	-
22:00-22:59	0.0069	0.0092	-	-	0.0012	0.0229	-	-
23:00-23:59	0.0035	0.0023	-	-	0.0002	0.0043	-	-

TABLE 51. Hourly peaking factors: HBS and HBR

Time Period	HBS Auto PA	HBS Auto AP	$\begin{gathered} \text { HBS } \\ \text { Transit PA } \end{gathered}$	HBS Transit AP	$\begin{gathered} \text { HBR } \\ \text { Auto PA } \end{gathered}$	HBR Auto AP	$\begin{gathered} \hline \text { HBR } \\ \text { Transit PA } \\ \hline \end{gathered}$	HBR Transit AP
0:00-0:59	-	-	-	-	-	-	-	-
1:00-1:59	-	-	-	-	-	-	-	-
2:00-2:59	-	-	-	-	-	0.0057	-	-
3:00-3:59	-	-	-	-	-	-	-	-
4:00-4:59	-	-	-	-	0.0044	-	-	-
5:00-5:59	0.0015	-	-	-	0.0334	0.0010	-	-
6:00-6:59	0.0038	0.0004	-	-	0.0191	0.0305	-	-
7:00-7:59	0.0069	0.0041	0.0039	-	0.0207	0.0113	-	-
8:00-8:59	0.0098	0.0074	0.0039	-	0.0446	0.0055	-	-
9:00-9:59	0.0364	0.0175	0.0298	-	0.0310	0.0133	0.0359	-
10:00-10:59	0.0270	0.0267	0.0964	0.0039	0.0228	0.0231	0.5181	-
11:00-11:59	0.0321	0.0259	0.0270	0.0496	0.0228	0.0223	-	-
12:00-12:59	0.0233	0.0375	0.0579	0.0323	0.0154	0.0172	-	0.0263
13:00-13:59	0.0683	0.0665	0.0714	0.0435	0.0191	0.0175	-	-
14:00-14:59	0.0259	0.0529	0.1445	0.0824	0.0127	0.0106	0.0526	0.1120
15:00-15:59	0.0308	0.0424	-	0.2071	0.0208	0.0175	-	0.0359
16:00-16:59	0.0123	0.0483	0.0145	0.0053	0.0547	0.0420	-	0.0526
17:00-17:59	0.0245	0.0723	-	0.1123	0.0801	0.0566	-	0.1402
18:00-18:59	0.0137	0.0606	-	0.0145	0.0319	0.0396	-	0.0263
19:00-19:59	0.0424	0.0446	-	-	0.0563	0.0557	-	-
20:00-20:59	0.0052	0.0383	-	-	0.0031	0.0536	-	-
21:00-21:59	0.0268	0.0067	-	-	0.0072	0.0353	-	-
22:00-22:59	0.0255	0.0063	-	-	0.0007	0.0306	-	-
23:00-23:59	-	0.0255	-	-	0.0057	0.0047	-	-

TABLE 52. Hourly peaking factors: College and School

Time Period	College Auto PA	College Auto AP	College Transit PA	$\begin{gathered} \text { College } \\ \text { Transit AP } \end{gathered}$	School Auto PA	School Auto AP	School Transit PA	$\begin{gathered} \text { School } \\ \text { Transit AP } \end{gathered}$
0:00-0:59	-	-	-	-	0.0004	0.0004	-	-
1:00-1:59	-	-	-	-	-	-	-	-
2:00-2:59	-	-	-	-	-	-	-	-
3:00-3:59	-	-	-	-	-	-	-	-
4:00-4:59	-	-	-	-	-	-	-	-
5:00-5:59	-	-	-	-	-	-	-	-
6:00-6:59	-	-	0.0197	-	0.0035	0.0015	0.0072	-
7:00-7:59	0.0741	-	0.0354	-	0.0796	0.0102	0.4704	-
8:00-8:59	0.0116	0.0009	0.1626	-	0.2216	0.1718	0.0830	-
9:00-9:59	0.0343	0.0026	0.0928	-	0.0152	0.0266	0.0165	-
10:00-10:59	0.0239	0.0080	0.1771	0.0250	0.0043	0.0054	0.0062	-
11:00-11:59	0.3265	0.0111	0.0297	0.0704	0.1509	0.1357	-	-
12:00-12:59	0.0057	0.0463	-	-	0.0038	0.0188	0.0039	-
13:00-13:59	0.0040	0.0115	0.0208	0.0669	0.0025	0.0032	-	0.0165
14:00-14:59	0.0041	0.0106	-	0.0268	0.0315	0.0175	-	0.0807
15:00-15:59	0.0017	0.0271	-	0.0435	0.0106	0.0294	-	0.3056
16:00-16:59	0.0040	0.2505	-	0.0044	0.0016	0.0083	-	0.0039
17:00-17:59	0.0207	0.0910	0.0060	0.1584	0.0092	0.0105	-	-
18:00-18:59	0.0076	0.0066	-	-	0.0011	0.0202	-	0.0062
19:00-19:59	-	-	-	0.0547	-	0.0006	-	-
20:00-20:59	-	0.0086	-	0.0060	0.0011	0.0015	-	-
21:00-21:59	-	0.0055	-	-	0.0007	0.0007	-	-
22:00-22:59	-	0.0015	-	-	-	-	-	-
23:00-23:59	-	-	-	-	-	-	-	-

TABLE 53. Hourly peaking factors: Non-Home, Externals, and Trucks

Time Period	NHBW Auto PA	NHBW Auto AP	NHBW Transit PA	NHBW Transit AP	NHBNW Auto OD	NHBNW Transit OD	Externals	Heavy Trucks	Medium Trucks
0:00-0:59	-	-	-	-	0.0002	-	0.0132	0.0151	0.0055
1:00-1:59	-	-	-	-	-	-	0.0132	0.0161	0.0048
2:00-2:59	-	-	-	-	-	-	0.0132	0.0142	0.0062
3:00-3:59	-	-	-	-	0.0002	-	0.0132	0.0166	0.0068
4:00-4:59	0.0004	0.0004	-	-	-	-	0.0132	0.0217	0.0140
5:00-5:59	0.0004	0.0049	-	-	0.0008	-	0.0132	0.0297	0.0200
6:00-6:59	0.0024	0.0035	-	-	0.0038	-	0.0560	0.0445	0.0355
7:00-7:59	0.0136	0.0578	-	0.0174	0.0328	0.0138	0.0628	0.0564	0.0540
8:00-8:59	0.0111	0.0888	-	0.0096	0.0520	0.0100	0.0628	0.0609	0.0830
9:00-9:59	0.0195	0.0402	0.0141	0.2320	0.0580	0.0192	0.0558	0.0721	0.0869
10:00-10:59	0.0246	0.0440	0.0124	-	0.0635	0.0325	0.0558	0.0778	0.0847
11:00-11:59	0.0447	0.0514	0.0167	-	0.0759	0.0634	0.0558	0.0750	0.0837
12:00-12:59	0.0457	0.0432	0.1494	0.0096	0.0880	0.0677	0.0558	0.0717	0.0821
13:00-13:59	0.0456	0.0457	-	0.3149	0.1027	0.0538	0.0558	0.0691	0.0791
14:00-14:59	0.0351	0.0311	0.0174	0.0089	0.1223	0.0741	0.0596	0.0666	0.0801
15:00-15:59	0.0489	0.0418	0.0316	0.0220	0.1045	0.0905	0.0724	0.0573	0.0727
16:00-16:59	0.0774	0.0209	0.0279	0.0174	0.0775	0.1972	0.0724	0.0465	0.0551
17:00-17:59	0.1036	0.0052	0.0861	0.0052	0.0877	0.1865	0.0724	0.0364	0.0429
18:00-18:59	0.0221	0.0028	-	-	0.0309	0.0190	0.0596	0.0352	0.0330
19:00-19:59	0.0055	0.0059	-	-	0.0392	-	0.0326	0.0298	0.0227
20:00-20:59	0.0032	0.0025	-	0.0071	0.0346	0.1723	0.0326	0.0259	0.0169
21:00-21:59	0.0005	0.0009	-	-	0.0079	-	0.0326	0.0228	0.0120
22:00-22:59	0.0046	-	-	-	0.0169	-	0.0132	0.0200	0.0099
23:00-23:59	0.0002	-	-	-	0.0006	-	0.0132	0.0186	0.0084

Appendix A - Metro Model Forecasting Model Structure

